RESUMO
Tauopathies are neurodegenerative diseases that manifest with intracellular accumulation and aggregation of tau protein. These include Pick's disease, progressive supranuclear palsy, corticobasal degeneration and argyrophilic grain disease, where tau is believed to be the primary disease driver, as well as secondary tauopathies, such as Alzheimer's disease. There is a need to develop effective pharmacological therapies. Here we tested >1,400 clinically approved compounds using transgenic zebrafish tauopathy models. This revealed that carbonic anhydrase (CA) inhibitors protected against tau toxicity. CRISPR experiments confirmed that CA depletion mimicked the effects of these drugs. CA inhibition promoted faster clearance of human tau by promoting lysosomal exocytosis. Importantly, methazolamide, a CA inhibitor used in the clinic, also reduced total and phosphorylated tau levels, increased neuronal survival and ameliorated neurodegeneration in mouse tauopathy models at concentrations similar to those seen in people. These data underscore the feasibility of in vivo drug screens using zebrafish models and suggest serious consideration of CA inhibitors for treating tauopathies.
RESUMO
Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, such as huntingtin in Huntington's disease and ataxin 3 in spinocerebellar ataxia type 3 (SCA3). Age at onset of disease decreases with increasing polyglutamine length in these proteins and the normal length also varies. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs in vivo as a result of alternative splicing, causes toxicity. Although such mutant proteins are prone to aggregation, toxicity is also associated with soluble forms of the proteins. The function of the polyQ tracts in many normal cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 3 (refs 7, 8), which is widely expressed in the brain. Here we show that the polyQ domain enables wild-type ataxin 3 to interact with beclin 1, a key initiator of autophagy. This interaction allows the deubiquitinase activity of ataxin 3 to protect beclin 1 from proteasome-mediated degradation and thereby enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell lines and mouse primary neurons, and in vivo in mice. This activity of ataxin 3 and its polyQ-mediated interaction with beclin 1 was competed for by other soluble proteins with polyQ tracts in a length-dependent fashion. This competition resulted in impairment of starvation-induced autophagy in cells expressing mutant huntingtin exon 1, and this impairment was recapitulated in the brains of a mouse model of Huntington's disease and in cells from patients. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin 3 itself. Our data thus describe a specific function for a wild-type polyQ tract that is abrogated by a competing longer polyQ mutation in a disease protein, and identify a deleterious function of such mutations distinct from their propensity to aggregate.
Assuntos
Ataxina-3/química , Ataxina-3/metabolismo , Autofagia , Proteína Beclina-1/metabolismo , Peptídeos/metabolismo , Animais , Ataxina-3/deficiência , Ataxina-3/genética , Ligação Competitiva , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Éxons/genética , Feminino , Privação de Alimentos , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Neurônios/citologia , Neurônios/metabolismo , Fagossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Ubiquitina/metabolismoRESUMO
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Assuntos
Autofagia/fisiologia , Células Eucarióticas/metabolismo , Mamíferos/fisiologia , Animais , Células Eucarióticas/patologia , Humanos , Fagossomos/metabolismo , Transdução de Sinais , Estresse FisiológicoRESUMO
Perturbations in autophagy and apoptosis are associated with cancer development. XIAP and cIAP1 are two members of the inhibitors of apoptosis protein family whose expression is elevated in different cancers. Here we report that XIAP and cIAP1 induce autophagy by upregulating the transcription of Beclin 1, an essential autophagy gene. The E3 ubiquitin ligase activity of both proteins activates NFκB signalling, leading to the direct binding of p65 to the promoter of Beclin 1 and to its transcriptional activation. This mechanism may be relevant in cancer cells, since we found increased levels of autophagy in different B-cell lymphoma-derived cell lines where XIAP is overexpressed and pharmacological inhibition of XIAP in these cell lines reduced autophagosome biogenesis. Thus, the chemotherapy resistance associated with XIAP and cIAP1 overexpression observed in several human cancers may be, at least in part, due to the Beclin 1-dependent autophagy activation by IAPs described in this study. In this context, the disruption of this increased autophagy might represent a valuable pharmacological tool to be included in combined anti-neoplastic therapies.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Autofagia/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Membrana/genética , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína Beclina-1 , Humanos , Transdução de Sinais , Ativação TranscricionalRESUMO
Inhibition of the insulin/insulin-like growth factor signalling pathway increases lifespan and protects against neurodegeneration in model organisms, and has been considered as a potential therapeutic target. This pathway is upstream of mTORC1, a negative regulator of autophagy. Thus, we expected autophagy to be activated by insulin-like growth factor-1 (IGF-1) inhibition, which could account for many of its beneficial effects. Paradoxically, we found that IGF-1 inhibition attenuates autophagosome formation. The reduced amount of autophagosomes present in IGF-1R depleted cells can be, at least in part, explained by a reduced formation of autophagosomal precursors at the plasma membrane. In particular, IGF-1R depletion inhibits mTORC2, which, in turn, reduces the activity of protein kinase C (PKCα/ß). This perturbs the actin cytoskeleton dynamics and decreases the rate of clathrin-dependent endocytosis, which impacts autophagosome precursor formation. Finally, with important implications for human diseases, we demonstrate that pharmacological inhibition of the IGF-1R signalling cascade reduces autophagy also in zebrafish and mice models. The novel link we describe here has important consequences for the interpretation of genetic experiments in mammalian systems and for evaluating the potential of targeting the IGF-1R receptor or modulating its signalling through the downstream pathway for therapeutic purposes under clinically relevant conditions, such as neurodegenerative diseases, where autophagy stimulation is considered beneficial.
Assuntos
Autofagia/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Macrolídeos/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
In the prodromal phase of neurodegenerative diseases, microglia switch to an activated state resulting in increased secretion of pro-inflammatory factors. We reported that C - C chemokine ligand 3 (CCL3), C - C chemokine ligand 4 (CCL4) and C - C chemokine ligand 5 (CCL5) contained in the secretome of activated microglia inhibit neuronal autophagy via a non-cell autonomous mechanism. These chemokines bind and activate neuronal C - C chemokine receptor type 5 (CCR5), which, in turn, promotes phosphoinositide 3-kinase (PI3K) - protein kinase B (PKB, or AKT) - mammalian target of rapamycin complex 1 (mTORC1) pathway activation, which inhibits autophagy, thus causing the accumulation of aggregate-prone proteins in the cytoplasm of neurons. The levels of CCR5 and its chemokine ligands are increased in the brains of pre-manifesting Huntington disease (HD) and tauopathy mouse models. CCR5 accumulation might be due to a self-amplifying mechanism, since CCR5 is a substrate of autophagy and CCL5-CCR5-mediated autophagy inhibition impairs CCR5 degradation. Furthermore, pharmacological, or genetic inhibition of CCR5 rescues mTORC1-autophagy dysfunction and improves neurodegeneration in HD and tauopathy mouse models, suggesting that CCR5 hyperactivation is a pathogenic signal driving the progression of these diseases.
RESUMO
In neurodegenerative diseases, microglia switch to an activated state, which results in excessive secretion of pro-inflammatory factors. Our work aims to investigate how this paracrine signaling affects neuronal function. Here, we show that activated microglia mediate non-cell-autonomous inhibition of neuronal autophagy, a degradative pathway critical for the removal of toxic, aggregate-prone proteins accumulating in neurodegenerative diseases. We found that the microglial-derived CCL-3/-4/-5 bind and activate neuronal CCR5, which in turn promotes mTORC1 activation and disrupts autophagy and aggregate-prone protein clearance. CCR5 and its cognate chemokines are upregulated in the brains of pre-manifesting mouse models for Huntington's disease (HD) and tauopathy, suggesting a pathological role of this microglia-neuronal axis in the early phases of these diseases. CCR5 upregulation is self-sustaining, as CCL5-CCR5 autophagy inhibition impairs CCR5 degradation itself. Finally, pharmacological or genetic inhibition of CCR5 rescues mTORC1 hyperactivation and autophagy dysfunction, which ameliorates HD and tau pathologies in mouse models.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Animais , Microglia/metabolismo , Transdução de Sinais , Autofagia , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Doença de Huntington/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismoRESUMO
Autophagic decline is considered a hallmark of ageing. The activity of this intracytoplasmic degradation pathway decreases with age in many tissues and autophagy induction ameliorates ageing in many organisms, including mice. Autophagy is a critical protective pathway in neurons and ageing is the primary risk factor for common neurodegenerative diseases. Here, we describe that autophagosome biogenesis declines with age in mouse brains and that this correlates with increased expression of the SORBS3 gene (encoding vinexin) in older mouse and human brain tissue. We characterise vinexin as a negative regulator of autophagy. SORBS3 knockdown increases F-actin structures, which compete with YAP/TAZ for binding to their negative regulators, angiomotins, in the cytosol. This promotes YAP/TAZ translocation into the nucleus, thereby increasing YAP/TAZ transcriptional activity and autophagy. Our data therefore suggest brain autophagy decreases with age in mammals and that this is likely, in part, mediated by increasing levels of vinexin.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Musculares , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento/genética , Animais , Autofagia/genética , Encéfalo/metabolismo , Humanos , Mamíferos/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAPRESUMO
We present a protocol for in vivo siRNA-mediated knockdown of a gene of interest in mouse liver using systemic delivery via intravenous injection. We describe a step-by-step protocol for delivery of siRNA particles, with tips on how to optimize dosage. We detail steps for feeding/starving cycles as well as for liver tissue isolation, followed by gene expression analysis, measured at the mRNA and protein levels. For complete information on the generation and use of this protocol, please refer to Wrobel et al. (2020).
Assuntos
Técnicas de Silenciamento de Genes , Fígado/metabolismo , RNA Interferente Pequeno/farmacologia , Inanição/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Animais , Camundongos , RNA Interferente Pequeno/genética , Inanição/genética , Ubiquitina Tiolesterase/sangue , Ubiquitina Tiolesterase/genéticaRESUMO
Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.
Assuntos
Autofagia/efeitos dos fármacos , Doença de Huntington/fisiopatologia , Proteínas Quinases/fisiologia , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Clonidina/farmacologia , AMP Cíclico/metabolismo , Humanos , Doença de Huntington/imunologia , Receptores de Imidazolinas/antagonistas & inibidores , Minoxidil/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR , Fosfolipases Tipo C/metabolismo , Verapamil/farmacologiaRESUMO
The mechanistic target of rapamycin complex 2 (mTORC2) controls cell metabolism and survival in response to environmental inputs. Dysregulation of mTORC2 signaling has been linked to diverse human diseases, including cancer and metabolic disorders, highlighting the importance of a tightly controlled mTORC2. While mTORC2 assembly is a critical determinant of its activity, the factors regulating this event are not well understood, and it is unclear whether this process is regulated by growth factors. Here, we present data, from human cell lines and mice, describing a mechanism by which growth factors regulate ubiquitin-specific protease 9X (USP9X) deubiquitinase to stimulate mTORC2 assembly and activity. USP9X removes Lys63-linked ubiquitin from RICTOR to promote its interaction with mTOR, thereby facilitating mTORC2 signaling. As mTORC2 is central for cellular homeostasis, understanding the mechanisms regulating mTORC2 activation toward its downstream targets is vital for our understanding of physiological processes and for developing new therapeutic strategies in pathology.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Animais , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Transdução de Sinais , Ubiquitina Tiolesterase/genéticaRESUMO
The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
RESUMO
[This corrects the article DOI: 10.1038/s41421-020-0158-y.].
RESUMO
Autophagy is an evolutionarily conserved process across eukaryotes that degrades cargoes like aggregate-prone proteins, pathogens, damaged organelles and macromolecules via delivery to lysosomes. The process involves the formation of double-membraned autophagosomes that engulf the cargoes destined for degradation, sometimes with the help of autophagy receptors like p62, which are themselves autophagy substrates. LC3-II, a standard marker for autophagosomes, is generated by the conjugation of cytosolic LC3-I to phosphatidylethanolamine (PE) on the surface of nascent autophagosomes. As LC3-II is relatively specifically associated with autophagosomes and autolysosomes (in the absence of conditions stimulating LC3-associated phagocytosis), quantification of LC3-positive puncta is considered as a gold-standard assay for assessing the numbers of autophagosomes in cells. Here we find that the endogenous LC3-positive puncta become larger in cells where autophagosome formation is abrogated, and are prominent even when LC3-II is not formed. This occurs even with transient and incomplete inhibition of autophagosome biogenesis. This phenomenon is due to LC3-I sequestration to p62 aggregates, which accumulate when autophagy is impaired. This observation questions the reliability of LC3-immunofluorescence assays in cells with compromised autophagy.
Assuntos
Autofagia/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMO
The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cell growth and metabolism. Leucine (Leu) activates mTORC1 and many have tried to identify the mechanisms whereby cells sense Leu in this context. Here we describe that the Leu metabolite acetyl-coenzyme A (AcCoA) positively regulates mTORC1 activity by EP300-mediated acetylation of the mTORC1 regulator, Raptor, at K1097. Leu metabolism and consequent mTORC1 activity are regulated by intermediary enzymes. As AcCoA is a Leu metabolite, this process directly correlates with Leu abundance, and does not require Leu sensing via intermediary proteins, as has been described previously. Importantly, we describe that this pathway regulates mTORC1 in a cell-type-specific manner. Finally, we observed decreased acetylated Raptor, and inhibited mTORC1 and EP300 activity in fasted mice tissues. These results provide a direct mechanism for mTORC1 regulation by Leu metabolism.
Assuntos
Acetilcoenzima A/metabolismo , Proteína p300 Associada a E1A/metabolismo , Leucina/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease manifest with the neuronal accumulation of toxic proteins. Since autophagy upregulation enhances the clearance of such proteins and ameliorates their toxicities in animal models, we and others have sought to re-position/re-profile existing compounds used in humans to identify those that may induce autophagy in the brain. A key challenge with this approach is to assess if any hits identified can induce neuronal autophagy at concentrations that would be seen in humans taking the drug for its conventional indication. Here we report that felodipine, an L-type calcium channel blocker and anti-hypertensive drug, induces autophagy and clears diverse aggregate-prone, neurodegenerative disease-associated proteins. Felodipine can clear mutant α-synuclein in mouse brains at plasma concentrations similar to those that would be seen in humans taking the drug. This is associated with neuroprotection in mice, suggesting the promise of this compound for use in neurodegeneration.
Assuntos
Autofagia/efeitos dos fármacos , Reposicionamento de Medicamentos , Felodipino/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Embrião não Mamífero , Felodipino/uso terapêutico , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Cultura Primária de Células , Suínos , Porco Miniatura , Resultado do Tratamento , Peixe-Zebra , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
Expansions of polyglutamine (polyQ) tracts in different proteins cause 9 neurodegenerative conditions, such as Huntington disease and various ataxias. However, many normal mammalian proteins contain shorter polyQ tracts. As these are frequently conserved in multiple species, it is likely that some of these polyQ tracts have important but unknown biological functions. Here we review our recent study showing that the polyQ domain of the deubiquitinase ATXN3/ataxin-3 enables its interaction with BECN1/beclin 1, a key macroautophagy/autophagy initiator. ATXN3 regulates autophagy by deubiquitinating BECN1 and protecting it from proteasomal degradation. Interestingly, expanded polyQ tracts in other polyglutamine disease proteins compete with the shorter ATXN3 polyQ stretch and interfere with the ATXN3-BECN1 interaction. This competition results in decreased BECN1 levels and impaired starvation-induced autophagy, which phenocopies the loss of autophagic function mediated by ATXN3. Our findings describe a new autophagy-protective mechanism that may be altered in multiple neurodegenerative diseases.
Assuntos
Autofagia/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Ataxina-3/química , Ataxina-3/metabolismo , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Polimorfismo Genético , Expansão das Repetições de Trinucleotídeos/genéticaRESUMO
Aberrant protein aggregation is controlled by various chaperones, including CCT (chaperonin containing TCP-1)/TCP-1/TRiC. Mutated CCT4/5 subunits cause sensory neuropathy and CCT5 expression is decreased in Alzheimer's disease. Here, we show that CCT integrity is essential for autophagosome degradation in cells or Drosophila and this phenomenon is orchestrated by the actin cytoskeleton. When autophagic flux is reduced by compromise of individual CCT subunits, various disease-relevant autophagy substrates accumulate and aggregate. The aggregation of proteins like mutant huntingtin, ATXN3 or p62 after CCT2/5/7 depletion is predominantly autophagy dependent, and does not further increase with CCT knockdown in autophagy-defective cells/organisms, implying surprisingly that the effect of loss-of-CCT activity on mutant ATXN3 or huntingtin oligomerization/aggregation is primarily a consequence of autophagy inhibition rather than loss of physiological anti-aggregation activity for these proteins. Thus, our findings reveal an essential partnership between two key components of the proteostasis network and implicate autophagy defects in diseases with compromised CCT complex activity.
Assuntos
Autofagossomos/metabolismo , Autofagia , Chaperonina com TCP-1/metabolismo , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Ataxina-3/metabolismo , Drosophila , Feminino , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Camundongos Transgênicos , Proteínas de Ligação a RNA/metabolismoRESUMO
Autophagy is an important degradation pathway, which is induced after starvation, where it buffers nutrient deprivation by recycling macromolecules in organisms from yeast to man. While the classical pathway mediating this response is via mTOR inhibition, there are likely to be additional pathways that support the process. Here, we identify Annexin A2 as an autophagy modulator that regulates autophagosome formation by enabling appropriate ATG9A trafficking from endosomes to autophagosomes via actin. This process is dependent on the Annexin A2 effectors ARP2 and Spire1. Annexin A2 expression increases after starvation in cells in an mTOR-independent fashion. This is mediated via Jun N-terminal kinase activation of c-Jun, which, in turn, enhances the trans-activation of the Annexin A2 promoter. Annexin A2 knockdown abrogates starvation-induced autophagy, while its overexpression induces autophagy. Hence, c-Jun-mediated transcriptional responses support starvation-induced autophagy by regulating Annexin A2 expression levels.