Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 586(7831): 697-701, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116289

RESUMO

On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1-3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice-that is, water ice from the time of the comet's formation 4.5 billion years ago-in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of [Formula: see text], matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders' icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.

2.
Proc Natl Acad Sci U S A ; 117(19): 10181-10187, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341151

RESUMO

Observations of comet nuclei indicate that the main constituent is a mix of ice and refractory materials characterized by high porosity (70-75%) and low bulk strength (10-4-10-6 MPa); however, the nature and physical properties of these materials remain largely unknown. By combining surface inspection of comet 67P/Churyumov-Gerasimenko and three-dimensional (3D) modeling of the independent concentric sets of layers that make up the structure of its two lobes, we provide clues about the large-scale rheological behavior of the nucleus and the kinematics of the impact that originated it. Large folds in the layered structure indicate that the merging of the two cometesimals involved reciprocal motion with dextral strike-slip kinematics that bent the layers in the contact area without obliterating them. Widespread long cracks and the evidence of relevant mass loss in absence of large density variations within the comet's body testify that large-scale deformation occurred in a brittle-plastic regime and was accommodated through folding and fracturing. Comparison of refined 3D geologic models of the lobes with triaxial ellipsoids that suitably represent the overall layers arrangement reveals characteristics that are consistent with an impact between two roughly ellipsoidal cometesimals that produced large-scale axial compression and transversal elongation. The observed features imply global transfer of impact-related shortening into transversal strain. These elements delineate a model for the global rheology of cometesimals that could be possible evoking a prominent bonding action of ice and, to a minor extent, organics.

3.
Exp Astron (Dordr) ; 54(2-3): 713-744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36915624

RESUMO

The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history. Recent evidence for the existence of a subsurface ocean on Ceres and the complex geochemistry suggest past habitability and even the potential for ongoing habitability. GAUSS will return samples from Ceres with the aim of answering the following top-level scientific questions: What is the origin of Ceres and what does this imply for the origin of water and other volatiles in the inner Solar System?What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of dwarf planets?What are the astrobiological implications of Ceres? Is it still habitable today?What are the mineralogical connections between Ceres and our current collections of carbonaceous meteorites?

4.
Nature ; 526(7573): 402-5, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26416730

RESUMO

The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.

5.
Nature ; 523(7558): 63-6, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135448

RESUMO

Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

6.
Nature ; 467(7317): 814-6, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20944742

RESUMO

The peculiar object P/2010 A2 was discovered in January 2010 and given a cometary designation because of the presence of a trail of material, although there was no central condensation or coma. The appearance of this object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of main-belt comets. If confirmed, this new object would expand the range in heliocentric distance over which main-belt comets are found. Here we report observations of P/2010 A2 by the Rosetta spacecraft. We conclude that the trail arose from a single event, rather than a period of cometary activity, in agreement with independent results. The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around 10 February 2009.

7.
Nature ; 437(7061): 987-90, 2005 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16229066

RESUMO

Comets spend most of their life in a low-temperature environment far from the Sun. They are therefore relatively unprocessed and maintain information about the formation conditions of the planetary system, but the structure and composition of their nuclei are poorly understood. Although in situ and remote measurements have derived the global properties of some cometary nuclei, little is known about their interiors. The Deep Impact mission shot a projectile into comet 9P/Tempel 1 in order to investigate its interior. Here we report the water vapour content (1.5 10(32) water molecules or 4.5 10(6) kg) and the cross-section of the dust (330 km2 assuming an albedo of 0.1) created by the impact. The corresponding dust/ice mass ratio is probably larger than one, suggesting that comets are 'icy dirtballs' rather than 'dirty snowballs' as commonly believed. High dust velocities (between 110 m s(-1) and 300 m s(-1)) imply acceleration in the comet's coma, probably by water molecules sublimated by solar radiation. We did not find evidence of enhanced activity of 9P/Tempel 1 in the days after the impact, suggesting that in general impacts of meteoroids are not the cause of cometary outbursts.

8.
Science ; 349(6247): aaa5102, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25873744

RESUMO

Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. On the basis of magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko (67P), we show that no global magnetic field was detected within the limitations of analysis. The Rosetta Magnetometer and Plasma Monitor (ROMAP) suite of sensors measured an upper magnetic field magnitude of less than 2 nanotesla at the cometary surface at multiple locations, with the upper specific magnetic moment being <3.1 × 10(-5) ampere-square meters per kilogram for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P is 1.6 × 10(8) ampere-square meters. We conclude that on the meter scale, magnetic alignment in the preplanetary nebula is of minor importance.

9.
Science ; 349(6247): aab0639, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228153

RESUMO

The Philae lander provides a unique opportunity to investigate the internal structure of a comet nucleus, providing information about its formation and evolution in the early solar system. We present Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) measurements of the interior of Comet 67P/Churyumov-Gerasimenko. From the propagation time and form of the signals, the upper part of the "head" of 67P is fairly homogeneous on a spatial scale of tens of meters. CONSERT also reduced the size of the uncertainty of Philae's final landing site down to approximately 21 by 34 square meters. The average permittivity is about 1.27, suggesting that this region has a volumetric dust/ice ratio of 0.4 to 2.6 and a porosity of 75 to 85%. The dust component may be comparable to that of carbonaceous chondrites.

10.
Science ; 349(6247): aaa9816, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228158

RESUMO

The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top of a more rigid layer. The final landing site, Abydos, has a hard surface.

11.
Science ; 347(6220): aaa0440, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613893

RESUMO

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.

12.
Science ; 347(6220): aaa1044, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613897

RESUMO

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

13.
Science ; 347(6220): aaa3905, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613898

RESUMO

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

14.
Science ; 336(6082): 700-4, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22582258

RESUMO

Multispectral images (0.44 to 0.98 µm) of asteroid (4) Vesta obtained by the Dawn Framing Cameras reveal global color variations that uncover and help understand the north-south hemispherical dichotomy. The signature of deep lithologies excavated during the formation of the Rheasilvia basin on the south pole has been preserved on the surface. Color variations (band depth, spectral slope, and eucrite-diogenite abundance) clearly correlate with distinct compositional units. Vesta displays the greatest variation of geometric albedo (0.10 to 0.67) of any asteroid yet observed. Four distinct color units are recognized that chronicle processes--including impact excavation, mass wasting, and space weathering--that shaped the asteroid's surface. Vesta's color and photometric diversity are indicative of its status as a preserved, differentiated protoplanet.

15.
Science ; 310(5746): 281-3, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16150976

RESUMO

The OSIRIS cameras (optical, spectroscopic, and infrared remote imaging system) onboard the European Space Agency's Rosetta spacecraft observed comet 9P/Tempel 1 for 17 days continuously around the time of NASA's Deep Impact mission. The cyanide-to-water production ratio was slightly enhanced in the impact cloud, compared with that of normal comet activity. Dust particles were flowing outward in the coma at >160 meters per second, accelerated by the gas. The slope of the brightness increase showed a dip about 200 seconds after the impact. Dust Afrho values before and long after the impact confirm the slight decrease of cometary activity. The dust-to-water mass ratio was much larger than 1.


Assuntos
Meteoroides , Poeira Cósmica , Compostos Orgânicos/análise , Astronave , Espectrofotometria Infravermelho , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA