Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 300(7): 107460, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876306

RESUMO

Obesity is a major risk factor for liver and cardiovascular diseases. However, obesity-driven mechanisms that contribute to the pathogenesis of multiple organ diseases are still obscure and treatment is inadequate. We hypothesized that increased , glucose-6-phosphate dehydrogenase (G6PD), the key rate-limiting enzyme in the pentose shunt, is critical in evoking metabolic reprogramming in multiple organs and is a significant contributor to the pathogenesis of liver and cardiovascular diseases. G6PD is induced by a carbohydrate-rich diet and insulin. Long-term (8 months) high-fat diet (HFD) feeding increased body weight and elicited metabolic reprogramming in visceral fat, liver, and aorta, of the wild-type rats. In addition, HFD increased inflammatory chemokines in visceral fat. Interestingly, CRISPR-edited loss-of-function Mediterranean G6PD variant (G6PDS188F) rats, which mimic human polymorphism, moderated HFD-induced weight gain and metabolic reprogramming in visceral fat, liver, and aorta. The G6PDS188F variant prevented HFD-induced CCL7 and adipocyte hypertrophy. Furthermore, the G6PDS188F variant increased Magel2 - a gene encoding circadian clock-related protein that suppresses obesity associated with Prader-Willi syndrome - and reduced HFD-induced non-alcoholic fatty liver. Additionally, the G6PDS188F variant reduced aging-induced aortic stiffening. Our findings suggest G6PD is a regulator of HFD-induced obesity, adipocyte hypertrophy, and fatty liver.


Assuntos
Adipócitos , Dieta Hiperlipídica , Fígado Gorduroso , Glucosefosfato Desidrogenase , Hipertrofia , Obesidade , Animais , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Masculino , Ratos , Obesidade/metabolismo , Obesidade/genética , Obesidade/patologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Adipócitos/metabolismo , Adipócitos/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Ratos Sprague-Dawley , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia
2.
J Biol Chem ; 298(12): 102691, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372233

RESUMO

DNA methylation potentially contributes to the pathogenesis of pulmonary hypertension (PH). However, the role of DNA methyltransferases (DNMTs: 1, 3a, and 3b), the epigenetic writers, in modulating DNA methylation observed in PH remains elusive. Our objective was to determine DNMT activity and expression in the lungs of experimental rat models of PH. Because the activity of DNMTs is metabolically driven, another objective was to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in regulating DNMT expression and activity in the lungs of novel loss-of-function Mediterranean G6PD variant (G6PDS188F) rats. As outlined for modeling PH, rats injected with sugen5416 (SU) were placed in a hypoxia (Hx) chamber set at 10% oxygen for 3 weeks and then returned to normoxia (Nx) for 5 weeks (SU/Hx/Nx). Rats kept in atmospheric oxygen and treated with SU were used as controls. We assessed the activity and expression of DNMTs in the lungs of rats exposed to SU/Hx/Nx. WT rats exposed to SU/Hx/Nx developed hypertension and exhibited increased DNMT activity and Dnmt1 and Dnmt3b expression. In G6PDS188F rats, which developed less of a SU/Hx/Nx-induced increase in right ventricle pressure and hypertrophy than WT rats, we observed a diminished increase in expression and activity of DNMTs, DNA hypomethylation, increased histone acetylation and methylation, and increased expression of genes encoding NOS3 and SOD2-vascular-protective proteins. Collectively, increased DNMTs contribute to reduced expression of protective genes and to the pathogenesis of SU/Hx/Nx-induced experimental PH. Notably, G6PD regulates the expression of DNMTs and protective proteins in the lungs of hypertensive rats.


Assuntos
Metilases de Modificação do DNA , Regulação Enzimológica da Expressão Gênica , Glucosefosfato Desidrogenase , Hipertensão Pulmonar , Animais , Ratos , Metilação de DNA , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hipertensão Pulmonar/genética , Oxigênio , Hipóxia Celular , Metilases de Modificação do DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069050

RESUMO

Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.


Assuntos
Metilação de DNA , Glucosefosfato Desidrogenase , Animais , Ratos , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilases de Modificação do DNA/genética , Expressão Gênica , Impressão Genômica , Glucosefosfato Desidrogenase/genética
4.
PLoS One ; 19(2): e0297752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363755

RESUMO

The increased fragmentation caused by harsher ionization methods used during mass spectrometry such as electron ionization can make interpreting the mass spectra of peptides difficult. Therefore, the development of tools to aid in this spectral analysis is important in utilizing these harsher ionization methods to study peptides, as these tools may be more accessible to some researchers. We have compiled fragmentation mechanisms described in the literature, confirmed them experimentally, and used them to create a Python-based fragment prediction model for peptides analyzed under direct exposure probe electron ionization mass spectrometry. This initial model has been tested using single amino acids as well as targeted libraries of short peptides. It was found that the model does well in predicting fragments of peptides composed of amino acids for which the model is well-defined, but several cases where additional mechanistic information needs to be incorporated have been identified.


Assuntos
Aminoácidos , Fragmentos de Peptídeos , Fragmentos de Peptídeos/metabolismo , Aminoácidos/química , Elétrons , Espectrometria de Massas/métodos , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
J Am Heart Assoc ; 13(19): e035174, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39291493

RESUMO

BACKGROUND: G6PD (glucose-6-phosphate-dehydrogenase) is a key enzyme in the glycolytic pathway and has been implicated in the pathogenesis of cancer and pulmonary hypertension-associated vascular remodeling. Here, we investigated the role of an X-linked G6pd mutation (N126D polymorphism), which is known to increase the risk of cardiovascular disease in individuals from sub-Saharan Africa and many others with African ancestry, in the pathogenesis of pulmonary hypertension induced by a vascular endothelial cell growth factor receptor blocker used for treating cancer. METHODS AND RESULTS: CRISPR-Cas9 genome editing was used to generate the G6pd variant (N126D; G6pdN126D) in rats. A single dose of the vascular endothelial cell growth factor receptor blocker sugen-5416 (SU; 20 mg/kg in DMSO), which is currently in a Phase 2/3 clinical trial for cancer treatment, was subcutaneously injected into G6pdN126D rats and their wild-type littermates. After 8 weeks of normoxic conditions, right ventricular pressure and hypertrophy, pulmonary artery remodeling, the metabolic profile, and cytokine expression were assessed. Right ventricular pressure and pulmonary arterial wall thickness were increased in G6PDN126D+SU/normoxic rats. Simultaneously, levels of oxidized glutathione, inositol triphosphate, and intracellular Ca2+ were increased in the lungs of G6PDN126D+SU/normoxic rats, whereas nitric oxide was decreased. Also increased in G6PDN126D+SU/normoxic rats were pulmonary levels of plasminogen activator inhibitor-1, thrombin-antithrombin complex, and expression of proinflammatory cytokines CCL3 (chemokine [C-C motif] ligand), CCL5, and CCL7. CONCLUSIONS: Our results suggest G6PDN126D increases inositol triphosphate-Ca2+ signaling, inflammation, thrombosis, and hypertrophic pulmonary artery remodeling in SU-treated rats. This suggests an increased risk of vascular endothelial cell growth factor receptor blocker-induced pulmonary hypertension in those carrying this G6PD variant.


Assuntos
Glucosefosfato Desidrogenase , Receptores de Fatores de Crescimento do Endotélio Vascular , Animais , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Ratos , Masculino , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Modelos Animais de Doenças , Remodelação Vascular/efeitos dos fármacos , Ratos Sprague-Dawley , Indóis/farmacologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Pirróis
6.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945640

RESUMO

Background: Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of DNMTs and TETs, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. Methods: In aorta of CRISPR-edited rats with the Mediterranean G6PD variant we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Results: Here, we documented higher expression of Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5,787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aorta from G6PDS188F as compared to wild-type rats. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. Conclusions: These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveals G6PDS188F variant contributes to reduce large artery stiffness.

7.
Neuron ; 111(6): 807-823.e7, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36626901

RESUMO

Previously, we demonstrated the efficacy of human pluripotent stem cell (hPSC)-derived GABAergic cortical interneuron (cIN) grafts in ameliorating seizures. However, a safe and reliable clinical translation requires a mechanistic understanding of graft function, as well as the assurance of long-term efficacy and safety. By employing hPSC-derived chemically matured migratory cINs in two models of epilepsy, we demonstrate lasting efficacy in treating seizures and comorbid deficits, as well as safety without uncontrolled growth. Host inhibition does not increase with increasing grafted cIN densities, assuring their safety without the risk of over-inhibition. Furthermore, their closed-loop optogenetic activation aborted seizure activity, revealing mechanisms of graft-mediated seizure control and allowing graft modulation for optimal translation. Monosynaptic tracing shows their extensive and specific synaptic connections with host neurons, resembling developmental connection specificity. These results offer confidence in stem cell-based therapy for epilepsy as a safe and reliable treatment for patients suffering from intractable epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes , Humanos , Convulsões/terapia , Epilepsia/terapia , Interneurônios/fisiologia , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA