Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(21): e2122544119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588456

RESUMO

Environmental perturbations during the first years of life are a major factor in psychiatric diseases. Phencyclidine (PCP), a drug of abuse, has psychomimetic effects, and neonatal subchronic administration of PCP in rodents leads to long-term behavioral changes relevant for schizophrenia. The cerebellum is increasingly recognized for its role in diverse cognitive functions. However, little is known about potential cerebellar changes in models of schizophrenia. Here, we analyzed the characteristics of the cerebellum in the neonatal subchronic PCP model. We found that, while the global cerebellar cytoarchitecture and Purkinje cell spontaneous spiking properties are unchanged, climbing fiber/Purkinje cell synaptic connectivity is increased in juvenile mice. Neonatal subchronic administration of PCP is accompanied by increased cFos expression, a marker of neuronal activity, and transient modification of the neuronal surfaceome in the cerebellum. The largest change observed is the overexpression of Ctgf, a gene previously suggested as a biomarker for schizophrenia. This neonatal increase in Ctgf can be reproduced by increasing neuronal activity in the cerebellum during the second postnatal week using chemogenetics. However, it does not lead to increased climbing fiber/Purkinje cell connectivity in juvenile mice, showing the complexity of PCP action. Overall, our study shows that administration of the drug of abuse PCP during the developmental period of intense cerebellar synaptogenesis and circuit remodeling has long-term and specific effects on Purkinje cell connectivity and warrants the search for this type of synaptic changes in psychiatric diseases.


Assuntos
Alucinógenos , Fenciclidina , Células de Purkinje , Esquizofrenia , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Alucinógenos/administração & dosagem , Alucinógenos/efeitos adversos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenciclidina/administração & dosagem , Fenciclidina/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Receptores da Fenciclidina/agonistas , Esquizofrenia/induzido quimicamente , Esquizofrenia/patologia , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
2.
FASEB J ; 30(6): 2382-99, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26993635

RESUMO

The collagen ColQ anchors acetylcholinesterase (AChE) in the synaptic cleft of the neuromuscular junction (NMJ). It also binds MuSK and perlecan/dystroglycan, 2 signaling platforms of the postsynaptic domain. Mutations in ColQ cause a congenital myasthenic syndrome (CMS) with AChE deficiency. Because the absence of AChE does not fully explain the complexity of the syndrome and there is no curative treatment for the disease, we explored additional potential targets of ColQ by conducting a large genetic screening of ColQ-deficient mice, a model for CMS with AChE deficiency, and analyzed their NMJ and muscle phenotypes. We demonstrated that ColQ controls the development and the maturation of the postsynaptic domain by regulating synaptic gene expression. Notably, ColQ deficiency leads to an up-regulation of the 5 subunits of the nicotinic acetylcholine receptor (AChR), leading to mixed mature and immature AChRs at the NMJ of adult mice. ColQ also regulates the expression of extracellular matrix (ECM) components. However, whereas the ECM mRNAs were down-regulated in vitro, compensation seemed to occur in vivo to maintain normal levels of these mRNAs. Finally, ColQ deficiency leads to a general atrophic phenotype and hypoplasia that affect fast muscles. This study points to new specific hallmarks for this CMS.-Sigoillot, S. M., Bourgeois, F., Karmouch, J., Molgó, J., Dobbertin, A., Chevalier, C., Houlgatte, R., Léger, J., Legay, C. Neuromuscular junction immaturity and muscle atrophy are hallmarks of the ColQ-deficient mouse, a model of congenital myasthenic syndrome with acetylcholinesterase deficiency.


Assuntos
Acetilcolinesterase/deficiência , Colágeno/metabolismo , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Atrofia Muscular/patologia , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/fisiologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Anticorpos , Colágeno/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Síndromes Miastênicas Congênitas/enzimologia , Síndromes Miastênicas Congênitas/genética , Transcriptoma
3.
Handb Exp Pharmacol ; 234: 275-298, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832492

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) are emerging as key regulators of nervous system development and health. aGPCRs can regulate many aspects of neural development, including cell signaling, cell-cell and cell-matrix interactions, and, potentially, mechanosensation. Here, we specifically focus on the roles of several aGPCRs in synapse biology, dendritogenesis, and myelinating glial cell development. The lessons learned from these examples may be extrapolated to other contexts in the nervous system and beyond.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Sinapses Elétricas/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Moléculas de Adesão Celular/metabolismo , Humanos , Ligantes , Modelos Moleculares , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Relação Estrutura-Atividade
4.
Sci Rep ; 13(1): 17563, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845276

RESUMO

The C1Q complement protein C1QL1 is highly conserved in mammals where it is expressed in various tissues including the brain. This secreted protein interacts with Brain-specific Angiogenesis Inhibitor 3, BAI3/ADGRB3, and controls synapse formation and maintenance. C1ql1 is expressed in the inferior olivary neurons that send projections to cerebellar Purkinje cells, but its expression in the rest of the brain is less documented. To map C1ql1 expression and enable the specific targeting of C1ql1-expressing cells, we generated a knockin mouse model expressing the Cre recombinase under the control of C1ql1 regulatory sequences. We characterized the capacity for Cre-driven recombination in the brain and mapped Cre expression in various neuron types using reporter mouse lines. Using an intersectional strategy with viral particle injections, we show that this mouse line can be used to target specific afferents of Purkinje cells. As C1ql1 is also expressed in other regions of the brain, as well as in other tissues such as adrenal glands and colon, our mouse model is a useful tool to target C1ql1-expressing cells in a broad variety of tissues.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Encéfalo/metabolismo , Células de Purkinje/metabolismo , Camundongos Transgênicos , Integrases/metabolismo , Mamíferos/metabolismo , Complemento C1q/metabolismo
5.
J Neurosci ; 30(1): 13-23, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053883

RESUMO

CollagenQ (ColQ) plays an important structural role at vertebrate neuromuscular junctions (NMJs) by anchoring and accumulating acetylcholinesterase (AChE) in the extracellular matrix (ECM). Moreover, ColQ interacts with perlecan/dystroglycan and the muscle-specific receptor tyrosine kinase (MuSK), key molecules in the NMJ formation. MuSK promotes acetylcholine receptor (AChR) clustering in a process mediated by rapsyn, a cytoplasmic protein that stimulates AChR packing in clusters and regulates synaptic gene transcription. Here, we investigated a regulatory role for ColQ by comparing the clustering and expression of synaptic proteins in wild type and ColQ-deficient muscle cells in culture and at NMJ. We show first that AChR clusters are smaller and more densely packed in the absence of ColQ both in vitro and in vivo. Second, we find that like AChRs and rapsyn, MuSK mRNA levels are increased in cultured cells but not in muscles lacking ColQ. However, membrane-bound MuSK is decreased both in vitro and in vivo suggesting that ColQ controls MuSK sorting or stabilization in the muscle membrane. In line with this, our data show that activation of the MuSK signaling pathway is altered in the absence of ColQ leading to (1) perturbation of AChR clustering and/or beta-AChR subunit phosphorylation and (2) modifications of AChR mRNA level due to the lack of ColQ-MuSK interaction. Together, our results demonstrate that ColQ, in addition to its structural role, has important regulatory functions at the synapse by controlling AChR clustering and synaptic gene expression through its interaction with MuSK.


Assuntos
Acetilcolinesterase/fisiologia , Diferenciação Celular/fisiologia , Colágeno/fisiologia , Junção Neuromuscular/fisiologia , Terminações Pré-Sinápticas/fisiologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Colágeno/química , Colágeno/metabolismo , Camundongos , Camundongos Knockout , Junção Neuromuscular/citologia , Ratos , Agregação de Receptores/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/fisiologia , Sinapses/fisiologia
6.
Elife ; 102021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661101

RESUMO

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.


Assuntos
Proteínas Inativadoras do Complemento/genética , Aprendizagem , Proteínas de Membrana/genética , Atividade Motora/genética , Plasticidade Neuronal/genética , Animais , Proteínas Inativadoras do Complemento/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos
7.
Dev Neurobiol ; 77(1): 75-92, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27328461

RESUMO

The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017.


Assuntos
Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imunoglobulinas/fisiologia , Proteínas de Membrana/fisiologia , Morfogênese/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Técnicas de Cultura de Células , Camundongos
8.
Nat Commun ; 8: 15554, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561033

RESUMO

Three-dimensional fluorescence microscopy followed by image processing is routinely used to study biological objects at various scales such as cells and tissue. However, maximum intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of voxels, obliviously creating important artifacts and possibly misleading interpretation. Here we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate the usefulness of our approach by applying it to various biological applications using confocal and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy.

9.
Cell Rep ; 10(5): 820-832, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660030

RESUMO

Precise patterns of connectivity are established by different types of afferents on a given target neuron, leading to well-defined and non-overlapping synaptic territories. What regulates the specific characteristics of each type of synapse, in terms of number, morphology, and subcellular localization, remains to be understood. Here, we show that the signaling pathway formed by the secreted complement C1Q-related protein C1QL1 and its receptor, the adhesion-GPCR brain angiogenesis inhibitor 3 (BAI3), controls the stereotyped pattern of connectivity established by excitatory afferents on cerebellar Purkinje cells. The BAI3 receptor modulates synaptogenesis of both parallel fiber and climbing fiber afferents. The restricted and timely expression of its ligand C1QL1 in inferior olivary neurons ensures the establishment of the proper synaptic territory for climbing fibers. Given the broad expression of C1QL and BAI proteins in the developing mouse brain, our study reveals a general mechanism contributing to the formation of a functional brain.

10.
Ann N Y Acad Sci ; 1333: 43-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25424900

RESUMO

The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated noncovalently as a heterodimer at the plasma membrane. While the biological function of the GAIN domain-mediated autocleavage is not fully understood, mounting evidence suggests that the NTF and CTF possess distinct biological activities in addition to their function as a receptor unit. We discuss recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs.


Assuntos
Adesão Celular , Receptores Acoplados a Proteínas G/fisiologia , Animais , Deficiências do Desenvolvimento/genética , Humanos , Mutação , Neoplasias/genética , Transdução de Sinais , Sinapses/fisiologia
11.
Chem Biol Interact ; 187(1-3): 84-9, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20153305

RESUMO

Normal physiological activity of the neuromuscular junction (NMJ) requires that key molecules are clustered at the synapse. One of these molecules is acetylcholinesterase (AChE) that regulates acetylcholine levels. This enzyme exists under different isoforms but the predominant form at the NMJ is a collagen-tailed enzyme. The collagen associated to AChE (ColQ) fulfills two functions. It anchors and accumulates AChE in the extracellular matrix. Mutations in ColQ lead to faint or no activity of AChE in the synaptic cleft. As a consequence, normal NMJ functioning is impaired and myasthenic syndromes are observed in patients bearing these mutations. Here, we investigated the effects of ColQ deficiency on cholinesterases mRNA levels and cluster formation. We show that overexpression of AChE but not ColQ in muscle cells is sufficient to drive the formation of AChE clusters. The absence of ColQ in muscle cells in vitro and in vivo leads to an increase in AChE(R) and AChE(T) mRNAs, corresponding to two isoforms of AChE. However, AChE activity is decreased in the medium of ColQ-deficient cells suggesting that AChE secretion is impaired. Butyrylcholinesterase (BChE) mRNAs are also upregulated in vivo. Since AChE and BChE can associate with PRiMA, a membrane anchor, we explored the pattern of expression of PRiMA in vitro and in vivo. The level of PRiMA transcripts is downregulated in the absence of ColQ. Therefore, AChE, BChE and PRiMA mRNA level modifications found in the absence of ColQ cannot compensate for the physiological defects observed at the ColQ-deficient NMJs.


Assuntos
Acetilcolinesterase/metabolismo , Colágeno/deficiência , Acetilcolinesterase/química , Acetilcolinesterase/deficiência , Acetilcolinesterase/genética , Animais , Butirilcolinesterase/metabolismo , Diferenciação Celular , Linhagem Celular , Colágeno/genética , Regulação para Baixo , Variação Genética , Proteínas de Membrana/metabolismo , Camundongos , Músculos/citologia , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Solubilidade , Regulação para Cima
12.
J Biol Chem ; 280(27): 25611-20, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15890648

RESUMO

CAD is a multifunctional protein that initiates and regulates mammalian de novo pyrimidine biosynthesis. The activation of the pathway required for cell proliferation is a consequence of the phosphorylation of CAD Thr-456 by mitogen-activated protein (MAP) kinase. Although most of the CAD in the cell was cytosolic, cell fractionation and fluorescence microscopy showed that Thr(P)-456 CAD was primarily localized within the nucleus in association with insoluble nuclear substructures, including the nuclear matrix. CAD in resting cells was cytosolic and unphosphorylated. Upon epidermal growth factor stimulation, CAD moved to the nucleus, and Thr-456 was found to be phosphorylated. Mutation of the CAD Thr-456 and inhibitor studies showed that nuclear import is not mediated by MAP kinase phosphorylation. Two fluorescent CAD constructs, NLS-CAD and NES-CAD, were prepared that incorporated strong nuclear import and export signals, respectively. NLS-CAD was exclusively nuclear and extensively phosphorylated. In contrast, NES-CAD was confined to the cytoplasm, and Thr-456 remained unphosphorylated. Although alternative explanations can be envisioned, it is likely that phosphorylation occurs within the nucleus where much of the activated MAP kinase is localized. Trapping CAD in the nucleus had a minimal effect on pyrimidine metabolism. In contrast, when CAD was excluded from the nucleus, the rate of pyrimidine biosynthesis, the nucleotide pools, and the growth rate were reduced by 21, 36, and 60%, respectively. Thus, the nuclear import of CAD appears to promote optimal cell growth. UMP synthase, the bifunctional protein that catalyzes the last two steps in the pathway, was also found in both the cytoplasm and nucleus.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Núcleo Celular/enzimologia , Di-Hidro-Orotase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Aspartato Carbamoiltransferase/genética , Neoplasias da Mama , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Divisão Celular/fisiologia , Fracionamento Celular , Linhagem Celular Tumoral , Cricetinae , Citoplasma/enzimologia , Di-Hidro-Orotase/genética , Di-Hidro-Orotato Desidrogenase , Fator de Crescimento Epidérmico/farmacologia , Imunofluorescência , Humanos , Rim/citologia , Microscopia Confocal , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fosforilação , Pirimidinas/metabolismo , Treonina/genética
13.
Int J Cancer ; 109(4): 491-8, 2004 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-14991569

RESUMO

The activity of the de novo pyrimidine biosynthetic pathway in the MCF7 breast cancer cells was 4.4-fold higher than that in normal MCF10A breast cells. Moreover, while pyrimidine biosynthesis in MCF10A was tightly regulated, increasing as the culture matured and subsequently down-regulated in confluency, the biosynthetic rate in MCF7 cells remained elevated and invariant in all growth phases. The flux through the pathway is regulated by carbamoyl phosphate synthetase, a component of the multifunctional protein, CAD. The intracellular CAD concentration was 3.5- to 4-fold higher in MCF7 cells, an observation that explains the high rate of pyrimidine biosynthesis but cannot account for the lack of growth-dependent regulation. In MCF10A cells, up-regulation of the pathway in the exponential growth phase resulted from MAP kinase phosphorylation of CAD Thr456. The pathway was subsequently down-regulated by dephosphorylation of P approximately Thr456 and the phosphorylation of CAD by PKA. In contrast, the CAD P approximately Thr456 was persistently phosphorylated in MCF7 cells, while the PKA site remained unphosphorylated and consequently the activity of the pathway was elevated in all growth phases. In support of this interpretation, inhibition of MAP kinase in MCF7 cells decreased CAD P approximately Thr456, increased PKA phosphorylation and decreased pyrimidine biosynthesis. Conversely, transfection of MCF10A with constructs that elevated MAP kinase activity increased CAD P approximately Thr456 and the pyrimidine biosynthetic rate. The differences in the CAD phosphorylation state responsible for unregulated pyrimidine biosynthesis in MCF7 cells are likely to be a consequence of the elevated MAP kinase activity and the antagonism between MAP kinase- and PKA-mediated phosphorylations.


Assuntos
Neoplasias da Mama/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Pirimidinas/biossíntese , Regulação Alostérica , Aspartato Carbamoiltransferase/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Cinética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transfecção , Células Tumorais Cultivadas , Uridina Trifosfato/farmacologia
14.
J Biol Chem ; 278(5): 3403-9, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12438317

RESUMO

De novo pyrimidine biosynthesis is activated in proliferating cells in response to an increased demand for nucleotides needed for DNA synthesis. The pyrimidine biosynthetic pathway in baby hamster kidney cells, synchronized by serum deprivation, was found to be up-regulated 1.9-fold during S phase and subsequently down-regulated as the cells progressed through the cycle. The nucleotide pools were depleted by serum starvation and were not replenished during the first round of cell division, suggesting that the rate of utilization of the newly synthesized nucleotides closely matched their rate of formation. The activation and subsequent down-regulation of the pathway can be attributed to altered allosteric regulation of the carbamoyl-phosphate synthetase activity of CAD (carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase), a multifunctional protein that initiates mammalian pyrimidine biosynthesis. As the culture approached S-phase there was an increased sensitivity to the allosteric activator, 5-phosphoribosyl-1-pyrophosphate, and a loss of UTP inhibition, changes that were reversed when cells emerged from S phase. The allosteric regulation of CAD is known to be modulated by MAP kinase (MAPK) and protein kinase A (PKA)-mediated phosphorylations as well as by autophosphorylation. CAD was found to be fully autophosphorylated in the synchronized cells, but the level remained invariant throughout the cycle. Although the MAPK activity increased early in G(1), the phosphorylation of the CAD MAPK site was delayed until just before the onset of S phase, probably due to antagonistic phosphorylation by PKA that persisted until late G(1). Once activated, pyrimidine biosynthesis remained elevated until rephosphorylation of CAD by PKA and dephosphorylation of the CAD MAPK site late in S phase. Thus, the cell cycle-dependent regulation of pyrimidine biosynthesis results from the sequential phosphorylation and dephosphorylation of CAD under the control of two important signaling cascades.


Assuntos
Ciclo Celular/fisiologia , Pirimidinas/biossíntese , Animais , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Replicação do DNA , Di-Hidro-Orotase/metabolismo , Cinética , Complexos Multienzimáticos/metabolismo , Fosforilação , Fase S , Uridina Trifosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA