RESUMO
Following reductions in acid deposition in the Great Smoky Mountains National Park (GRSM) since the 2000s, many streams remain acidic and the role of organic acids (OA-) remains unknown due to limited OA- data. This study investigated dissolved organic carbon (DOC) concentrations as a surrogate for OA- across GRSM and its relationships with watershed characteristics, seasons, flow, and stream chemistry. Baseflow water samples were collected from seven watersheds for 2 years and stormflow samples from three watersheds for 1 year. During baseflow, DOC concentrations ranged from < 0.04 to 2.29 mg L-1 with watershed medians between 0.61 and 1.00 mg L-1. Stormflow DOC concentrations ranged from 1.36 to 5.66 mg L-1. During the summer, median DOC concentrations were about twice that of the other three seasons. Stream DOC concentrations decreased with increasing elevation during baseflow but increased with increasing elevation during stormflow. Considering high elevations historically received greater acid deposition, this gradient between baseflow and stormflow suggests higher elevation streams are more impacted by OA-. Based on an OA-/DOC acidity model, it was estimated that during baseflow OA- was a minor contributor to stream acidity, in the order of 5.3 µeq L-1, however stormflow OA- was estimated at 52.5 µeq L-1, contributing to nearly half of stream acidity. Baseflow DOC was significantly correlated with pH and Ca2+, suggesting stream acidification/recovery is governed by base cations and Ca2+ availability. Furthermore, this study provides essential data for future research to evaluate stream DOC trends during acidification recovery and changes in biogeochemical processes.
Assuntos
Carbono , Monitoramento Ambiental , Parques Recreativos , Rios , Poluentes Químicos da Água , Rios/química , Carbono/análise , Poluentes Químicos da Água/análise , Chuva Ácida , Estações do AnoRESUMO
Permeable pavements are increasingly implemented to mitigate the negative hydrologic outcomes associated with impervious surfaces. However, the hydraulic function of permeable pavements is hindered by clogging in their joint openings, and systematic maintenance is needed to ensure hydraulic functionality throughout the design lifespan of these systems. To quantify the effectiveness of various maintenance measures, surface infiltration rates (SIRs) were measured before and after five different maintenance techniques were applied to five permeable interlocking concrete pavements (PICPs) in central Ohio, USA. Three maintenance techniques, the Municipal Cleaning Vehicle (MCV), the Rejuvenater, and a pressure washer and the Rejuvenater performed in series, significantly improved median SIRs from 16 to 26, 5 to 106, and 11 to 37 mm/min, respectively. However, pressure washing alone resulted in no significant difference to PICP SIR (median SIRs increased from 8 to 20 mm/min). Regenerative air street sweeping significantly worsened SIRs when performed during wet weather (median SIRs decreased from 19 to 4 mm/min) but had no significant impact on SIRs during dry weather (median SIRs decreased from 21 to 18 mm/min). This work captured the maintenance effectiveness of two techniques for the first or second time, namely the Rejuvenater and MCV, to investigate their use as a suitable maintenance technique. Further, the maintenance techniques were tested on multiple PICPs, thus the effect of in-situ pavement conditions had on hydraulic improvement via maintenance could be addressed. Differences in general upkeep, traffic, and runoff routed to a PICP affected the depth of clogging below the pavement surface, which forestalled hydraulic improvement. Though shown to improve the SIR of PICP systems, results indicate that the maintenance techniques were not capable of restoring pavement hydraulics to initial conditions. These results demonstrate the need for regular, routine maintenance and topping up of joint aggregate before clogging migrates deeper into the pavement profile.
Assuntos
Hidrocarbonetos , Movimentos da Água , Monitoramento Ambiental , Hidrologia , OhioRESUMO
We evaluated Iowa Department of Natural Resources nitrate (NO3-N) and US Geological Survey hydrological data from 1987 to 2016 in nine agricultural watersheds to assess how transport of this pollutant has changed in the US state of Iowa. When the first 15 years of the 30-year water-quality record is compared to the second 15 years (1987-2001 and 2002-2016), three different metrics used to quantify NO3-N transport all indicate levels of this pollutant are increasing. Yield of NO3-N (kg ha-1) averaged 18% higher in the second 15 years, while flow-weighted average concentrations (mg L-1) were 12% higher. We also introduced the new metric of NO3-N yield (g ha-1) per mm precipitation to assess differences between years and watersheds, which averaged 21 g NO3-N ha-1 per 1 mm of precipitation across all watersheds and was 13% higher during the second half of the record. These increases of NO3-N occurred within a backdrop of increasing wetness across Iowa, with precipitation and discharge levels 8 and 16% higher in the last half of the record, indicating how NO3-N transport is amplified by increasing precipitation levels. The implications of this are that in future climate scenarios where rainfall is more abundant, detaining water and increasing evapotranspiration within the cropping system will be necessary to control NO3-N losses. Land use changes that include use of cover crops, living mulches, and perennial plants should be expanded to improve water quality and affect the water balance within agricultural basins.
Assuntos
Monitoramento Ambiental/métodos , Nitratos/análise , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/história , Monitoramento Ambiental/história , História do Século XX , História do Século XXI , Iowa , Movimentos da ÁguaRESUMO
Urban stormwater is a substantial source of non-point source pollution. Despite considerable monitoring efforts, little is known about stormwater quality in certain geographic regions. These spatial gaps induce uncertainty when extrapolating data and reduce model calibration capabilities, thereby limiting pollutant load reduction strategies. In this study, stormwater quality was monitored from 15 watersheds to characterize pollutant event mean concentrations (EMCs) and loads as a function of urban and forested (i.e., surrogates for pre-development) land use and land covers (LULCs) and rainfall patterns from a geographic region where these data are sparse. Residential and heavy industrial, heavy industrial, and industrial and commercial LULCs, respectively, were the primary generators of nutrients, total suspended solids (TSS), and heavy metals. Increased rainfall intensities (average and peak) significantly increased the EMCs of all particulate bound pollutants. Pollutant loads increased with rainfall depth and, in general, did not follow the same LULC trends as EMCs, suggesting loads were influenced substantially by watershed hydrologic responses. Mean annual urban loads of total phosphorus, total nitrogen, TSS, and zinc (Zn) ranged from 0.4 (low density residential [LDR]) to 1.5 (heavy industrial), 3.2 (single family residential [SFR]) to 11.5 (heavy industrial), 122.6 (SFR) to 1219.9 (heavy industrial), and 0.1 (LDR) to 0.7 (commercial) kg/ha/yr, respectively. Annual urban loads of TSS were 3.5 to 34 and - 1.5 to 6.8-fold greater than annual loads from forested and agricultural watersheds, respectively. Mean annual loads of heavy metals from urban LULCs were substantially greater than loads produced by forested and agricultural watersheds (e.g., 8.6 to 92 and 6.8 to 73-fold greater, respectively, for Zn), while loads of nutrients were generally similar between urban and agricultural watersheds. Findings herein suggest non-point source pollution will continue to threaten surface water quality as land is developed; results can help guide the development of cost-efficient stormwater management strategies.
Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Chuva , Zinco , Movimentos da ÁguaRESUMO
Identifying sources of pollutants in watersheds is critical to accurately predicting stormwater quality. Many existing software used to model stormwater quality rely on decades-old data sets which may not represent current runoff quality in the United States. Because of environmental regulations promulgated at the federal level over previous decades, there is a need to understand long-term trends (and potential shifts) in runoff quality to better parameterize models. Pollutant event mean concentrations (EMCs) from the National Stormwater Quality Database (NSQD) were combined with those from recent sources to understand if untreated stormwater quality has changed over the past 40 years. A significant decreasing monotonic trend (i.e., continually decreasing in a nonuniform fashion) was observed for total suspended solids (TSS), total phosphorus (TP), total Kjeldahl nitrogen (TKN), total copper (Cu), total lead (Pb), and total zinc (Zn) in the resultant database, suggesting that runoff quality has become less polluted with time. Median EMCs decreased from 99.2 to 42 mg/L, 0.34 to 0.26 mg/L, 1.27 to 1.03 mg/L, 40 to 6.8 µg/L, 110 to 3.7 µg/L, and 375 to 53.3 µg/L for TSS, TP, TN, Cu, Pb, and Zn, respectively, from the 1980s to the 2010s. These significant reductions often aligned temporally with advancements in clean manufacturing, amendments of the Clean Air Act, and other source control efforts which impact pollutant bioavailability and atmospheric deposition. Results suggest environmental regulations not specifically targeting stormwater management have had a positive impact on stormwater quality and that temporal fluctuations should be considered in modeling.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Estados Unidos , Poluentes Químicos da Água/análise , Chumbo , Zinco/análise , Fósforo , Monitoramento Ambiental/métodos , Chuva , Movimentos da ÁguaRESUMO
Many natural and anthropogenic factors cause degradation of urban stormwater quality, resulting in negative consequences to receiving waters. In order to improve water quality models at a variety of scales, accurate estimates of pollutant (nutrients, total suspended solids, and heavy metal) concentrations are needed using potential explanatory variables. To this end, a meta-analysis was performed on aggregated stormwater quality data from the published literature from 360 urban catchments worldwide to understand how urban land use and land cover (LULC), climate (i.e., KÓ§ppen-Geiger zone), and imperviousness (1) affect runoff quality, and (2) whether they are able to predict stormwater pollutant concentrations. Runoff pollutant concentrations were more influenced by LULC and climate than imperviousness. Differences in LULC significantly affected the generation of metals and some nitrogen species. Road, city center, and commercial LULCs generally produced the most elevated pollutant concentrations. Changes in climate zones resulted in significant differences in concentrations of nutrients and metals. Continental and arid climate zones produced runoff with the highest pollutant concentrations. Rainfall patterns seemed to have a more important role in affecting runoff quality than seasonal temperature. Differences in imperviousness only significantly affected chromium and nickel concentrations, although increased imperviousness led to slightly (not significantly) elevated concentrations of nutrients, suspended solids, and other heavy metals. Multiple linear regression models were created to predict the quality of urban runoff. Predictive equations were significant (p < 0.05) for 67% of the pollutants analyzed (ammonia, total Kjeldahl nitrogen, total nitrogen, total phosphorus, cadmium, nickel, lead, and zinc) suggesting that LULC, climate, and imperviousness are useful predictors of stormwater quality when local field monitoring or modeling is not practical. This study provides useful relationships to better inform urban stormwater quality models and regulations such as total maximum daily loads.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Efeitos Antropogênicos , Monitoramento Ambiental , Chuva , Movimentos da Água , Poluentes Químicos da Água/análiseRESUMO
While wastewater has been found to harbor SARS-CoV-2, the persistence of SARSCoV-2 in stormwater and potential transmission is poorly understood. It is plausible that the virus is detectable in stormwater samples where human-originated fecal contamination may have occurred from sources like sanitary sewer overflows, leaky wastewater pipes, and non-human animal waste. Because of these potential contamination pathways, it is possible that stormwater could serve as an environmental reservoir and transmission pathway for SARS-CoV-2. The objectives of this study are: 1) determine whether the presence of SARS-CoV-2 could be detected in stormwater via RT-ddPCR (reverse transcription-digital droplet PCR); 2) quantify human-specific fecal contamination using microbial source tracking; and 3) examine whether rainfall characteristics influence virus concentrations. To accomplish these objectives, we investigated whether SARS-CoV-2 could be detected from 10 storm sewer outfalls each draining a single, dominant land use in Columbus, Xenia, and Springboro, Ohio. Of the 25 samples collected in 2020, at minimum one SARS-CoV-2 target gene (N2 [US-CDC and CN-CDC], and E) was detected in 22 samples (88%). A single significant correlation (p = 0.001), between antecedent dry period and the USCDC N2 gene, was found between target gene concentrations and rainfall characteristics. Grouped by city, two significant relationships emerged showing cities had different levels of the SARS-CoV-2 E gene. Given the differences in scale, the county-level COVID-19 confirmed cases COVID-19 rates were not significantly correlated with stormwater outfall-scale SARS-CoV-2 gene concentrations. Countywide COVID-19 data did not accurately portray neighborhood-scale confirmed COVID-19 case rates. Potential hazards may arise when human fecal contamination is present in stormwater and facilitates future investigation on the threat of viral outbreaks via surfaces waters where fecal contamination may have occurred. Future studies should investigate whether humans are able to contract SARS-CoV-2 from surface waters and the factors that may affect viral longevity and transmission.