Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 303: 114146, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838378

RESUMO

The presence of atrazine a persistent herbicide in soil poses a serious threat to the ecosystem. The biochar amendment in soil altered the fate of this herbicide by modifying the soil properties. The present study examines the dissipation and toxicity of atrazine in three contrasting soils (silty clay, sandy loam, and sandy clay) without and with biochar amendment (4%). The experiment was performed for 150 days with three application rates of atrazine (4, 8, and 10 mg kg-1). The speciation and degradation of atrazine, metabolite content, microbial biomass, and enzymatic activities were evaluated in all treatments. Three kinetic models and soil enzyme index were calculated to scrutinize the degradation of atrazine and its toxicity on soil biota, respectively. The goodness of fit statistical indices suggested that the first-order double exponential decay (FODE) model best described the degradation of atrazine in silty clay soil. However, a single first order with plateau (SFOP) was best fitted for atrazine degradation in sandy loam and sandy clay soils. The half-life of atrazine was higher in sandy clay soil (27-106 day-1) than silty clay (28-77 day-1) and sandy loam soil (27-83 day-1). The variations in the dissipation kinetics and half-life of the atrazine in three soil were associated with atrazine partitioning, availability of mineral content (silica, aluminum, and iron), and soil microbial biomass carbon. Biochar amendment significantly reduced the plateau in the kinetic curve and also reduced the atrazine toxicity on soil microbiota. Overall, biochar was more effective in sandy clay soil for the restoration of soil microbial activities under atrazine stress due to modulation in the pH and more improved soil quality.


Assuntos
Atrazina , Microbiota , Poluentes do Solo , Atrazina/toxicidade , Carvão Vegetal , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Physiol Plant ; 2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33713449

RESUMO

Contaminations of heavy metals such as lead (Pb) and cadmium (Cd) in medicinal plants (MPs) not only restrict their safe consumption due to health hazards but also lower their productivity. Biochar amendments in the soil are supposed to immobilize the toxic metals, improve the soil quality and agricultural productivity. However, the impact of biochar on growth attributes, metal accumulation, pharmacologically active compounds of MPs, and health risk is less explored. An experiment was performed on three medicinal plants (Bacopa monnieri (L.), Andrographis paniculata (Burmf.) Nees, and Withaniasomnifera (L.)) grown in a greenhouse in soil co-contaminated with Pb and Cd (at two concentrations) without and with biochar amendments (2 and 4% application rates). The fractionation of Pb and Cd, plant growth parameters, stress enzymes, photosynthetic capacity, pharmacologically active compounds, nutrient content, uptake and translocation of metals, antioxidant activities, and metabolite content were examined in the three MPs. The accumulation of Pb and Cd varied from 3.25-228 mg kg1 and 1.29-20.2 mg kg-1 , respectively, in the three MPs, while it was reduced to 0.08-18 mg kg-1 and 0.03-6.05 mg kg-1 upon biochar treatments. Plants grown in Pb and Cd co-contaminated soil had reduced plant biomass (5-50% depending on the species) compared to control and a deleterious effect on photosynthetic attributes and protein content. However, biochar amendments significantly improved plant biomass (21-175%), as well as photosynthesis attributes, chlorophyll, and protein contents. Biochar amendments in Pb and Cd co-contaminated soil significantly reduced the health hazard quotient (HQ) estimated for the consumption of these medicinal herbs grown on metal-rich soil. An enhancement in secondary metabolite content and antioxidant properties was also observed upon biochar treatments. These multiple beneficial effects of biochar supplementation in Pb and Cd co-contaminated soil suggested that a biochar amendment is a sustainable approach for the safe cultivation of MPs. This article is protected by copyright. All rights reserved.

3.
Environ Sci Pollut Res Int ; 30(3): 7040-7055, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36029442

RESUMO

Chlorpyrifos (CP), a broad-spectrum organophosphorus insecticide, is known for deleterious effects on soil enzymatic activities. Hence, the present study aims to examine the resilience effect of biochar (BC) aided Pelargonium graveolens L. plantation on enzymatic activities of chlorpyrifos contaminated soil. The two chlorpyrifos contaminated agriculture soils (with concentrations: S1: 46.1 and S2: 95.5 mg kg-1) were taken for the pot experiment. The plant biomass, plant growth parameters, soil microbial biomass, and enzymatic activities such as alkaline phosphatase, N-acetyl glucosaminidase, aryl sulphatase, cellulase, ß-glucosidase, dehydrogenase, phenoloxidase, and peroxidase enzymes were  examined. Ecoenzyme activities and their stoichiometry were used to enumerate the different indices including geometric mean, weighted mean, biochemical activity indices, integrated biological response, treated-soil quality index, and vector analysis in all treatments. The results of the study demonstrated that the biochar incorporation enhanced the tolerance of P. graveolens (from 42-45% to 55-67%) in chlorpyrifos contaminated soil and reduced the CP accumulation in plants. A reduction in the inhibitory effect of chlorpyrifos on soil enzymatic activities and plant growth by BC incorporation was observed along with an increase in the activities of ecoenzymes (16.7-18.6%) in soil. The investigation indicated more microbial investments in C and P than that in N acquisition under CP stress. The BC amendment catalyzed the activities of lignin and cellulose-degrading enzymes and enhanced nutrition acquisition. The CP contamination and BC amendment have no significant effect on the oil quality of P. graveolens. The study demonstrated that BC-aided P. graveolens plantation offers sustainable phytotechnology for CP contaminated soil with an economic return.


Assuntos
Clorpirifos , Inseticidas , Pelargonium , Poluentes do Solo , Inseticidas/análise , Solo , Compostos Organofosforados , Carvão Vegetal , Hidrolases , Poluentes do Solo/análise
4.
Environ Sci Pollut Res Int ; 30(51): 110133-110160, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37779123

RESUMO

Prevailing dry conditions and rainfall deficit during the spring season in North India led to heat wave conditions which resulted in widespread and intense forest fire events in the Himalayan state of Uttarakhand during April 16-30, 2022. A total of 7589 active fires were detected by VIIRS during the second half of April 2022 compared to 1558 during the first half. The TROPOMI observed total column values of CO and NO2 increased by 4.4% and 11.7%, respectively during April 16-30, 2022 with respect to April 1-15, 2022. A noticeable increase in surface level concentration of trace gases was also observed at Dehradun. In situ measurements of CO, NOx, and O3 during April 16-30, 2022 show an increase of 133, 35, and 6% compared to previous year observations during the same period. Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized to quantitatively estimate the contribution of this event on the distribution of air pollutants over this state. The model results were evaluated against ERA5 reanalysis, upper air soundings, and TROPOMI-retrieved total column density (TCD) of CO, NO2, and O3. Two simulations with (Fire) and without (NoFire) biomass burning emissions input were performed to quantify the contribution of forest fires to the concentration of trace gases and particulates. The CO, NO2, and O3 emitted/produced from forest fire over Uttarakhand during April 2022 contributed approximately 39.95, 35.73, and 9.97% to the surface concentration of respective gas. In the case of aerosols, it was around 71.20, 71.44, and 33.62% for PM2.5, PM10, and BC respectively. The vertical profile analysis of pollutants revealed that extreme forest fire events can perturb the distribution of air pollutants from the surface up to 450 hPa.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Incêndios Florestais , Poluentes Atmosféricos/análise , Temperatura Alta , Dióxido de Nitrogênio/análise , Monitoramento Ambiental/métodos , Ozônio/análise , Poluição do Ar/análise , Material Particulado/análise
5.
Environ Pollut ; 287: 117635, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34182386

RESUMO

The presence of atrazine, a triazine herbicide, and its residues in agriculture soil poses a serious threat to human health and environment through accumulation in edible plant parts. Hence, the present study focused on atrazine induced stress amelioration of Andrographis paniculata, an important medicinal plant, by a plant growth promoting and atrazine degrading endophytic bacterium CIMAP-A7 inoculation. Atrazine has a non-significant effect at a lower dose while at a higher dose (lower: 25 and higher: 50 mg kg-1) 22 and 36% decrease in secondary metabolite content and plant dry weight of A. paniculata was recorded, respectively. Endophyte CIMAP-A7 inoculation significantly reduced atrazine soil content, by 78 and 51% at lower and a higher doses respectively, than their respective control treatments. Inoculation of CIMAP-A7 exhibited better plant growth in terms of increased total chlorophyll, carotenoid, protein, and metabolite content with reduced atrazine content under both atrazine contaminated and un-contaminated treatments. Atrazine induced oxidative stress in A. paniculata was also ameliorated by CIMAP-A7 by reducing stress enzymes, proline, and malondialdehyde accumulation under contaminated soil conditions than un-inoculated treatments. Furthermore, the presence of atrazine metabolites deisopropylatrazine (DIA) and desethylatrazine (DEA) strongly suggests a role of CIMAP-A7 in mineralization however, the absence of these metabolites in uninoculated soil and all plant samples were recorded. These findings advocate that the amelioration of atrazine induced stress with no/least pesticide content in plant tissues by plant-endophyte co-interactions would be efficient in the remediation of atrazine contaminated soils and ensure safe crop produce.


Assuntos
Andrographis , Atrazina , Herbicidas , Poluentes do Solo , Atrazina/análise , Atrazina/toxicidade , Biodegradação Ambiental , Herbicidas/toxicidade , Humanos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
6.
J Hazard Mater ; 406: 124302, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162235

RESUMO

The present study explores the differential responses of two genotypes (APwC: wild collection and APMS: mass selection line) of A. paniculata against the three application rates of arsenic (42, 126, and 200 mg kg-1). The oxidative enzymes, As accumulation in different tissues, plant growth, and content of pharmacologically important ent-labdane-related diterpenes (ent-LRDs) of the two genotypes were evaluated in the study. Results demonstrated that As uptake significantly reduced plant biomass in APwC and APMS by 5-41.5% and 9-33% in a dose-response manner, respectively. The APMS exhibited lower bioconcentration and translocation factors, higher As tolerance index, and higher content of ent-LRDs as compared to APWC. As treatment induced a decrease in the sum of four metabolite content of APMS (1.43 times) and an increase in that of APWC (1.12 times) as compared to control. Likewise, variance in the production of 5,7,2',3'-tetramethoxyflavanone, and stress enzymes was also observed between APwC and APMS. The increase in the expression of ApCPS2 suggested its involvement in channeling of metabolic flux towards the biosynthesis of ent-LRDs under As stress.


Assuntos
Andrographis , Arsênio , Diterpenos , Arsênio/toxicidade , Genótipo , Estresse Oxidativo/genética , Extratos Vegetais
7.
J Hazard Mater ; 390: 121799, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31818656

RESUMO

Dumping of acidic mine waste poses severe threats to the ecosystem due to high acidity, nutrient deficiency and mobility of toxic metals. The present study has been undertaken on phytoremediation by amending the acidic soil/mine waste with biochar (BC) and plantation of palmarosa (Cymbopogon martini (Roxb.) Wats. A greenhouse experiment in different combinations of biochar and acidic mine waste was conducted to assess the phytoremediation efficiency of palmarosa by BC amendments. Results indicate that the palmarosa tolerates multiple stresses effectively with a 54 % metal tolerance index (MTI) and capable of reducing acid production from the acidic mine waste alone. BC incorporation in the mine waste and soil treatments significantly enhanced the palmarosa biomass (1.11-3.3 times) and oil content by liming the acid, immobilization of metals and improving the soil quality. BC addition in highly acidic mine waste amplified the phytoremediation efficiency and mitigates abiotic oxidative stress on plants (MTI 84 % to >100 %). BC aided palmarosa plantation shifted the soil from high-risk assessment code (RAC) to low RAC for vegetation. Biochar amendments along with palmarosa plantation offer a sustainable technology for phytostabilization of highly acidic mine waste along with the production of industrially important essential oil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal/administração & dosagem , Cymbopogon , Minas de Carvão , Cymbopogon/crescimento & desenvolvimento , Cymbopogon/metabolismo , Concentração de Íons de Hidrogênio , Resíduos Industriais , Metais , Óleos Voláteis/metabolismo , Poluentes do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA