Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(13): 135703, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355837

RESUMO

In this report, we investigate the effect of graphene nanofillers on the thermoelectric properties of Bi2Te3 nanosheets and demonstrate the role of interface for enhancing the overall figure of merit (ZT) ∼ 53%. The enhancement in the ZT is obtained due to an increase in the electrical conductivity (∼111%) and decrease in the thermal conductivity (∼12%) resulting from increased conducting channels and phonon scattering, respectively at the interfaces between graphene and Bi2Te3 nanosheets. A detailed analysis of the thermal conductivity reveals ∼4 times decrease in the lattice thermal conductivity in contrast to ∼2 times increase in the electronic thermal conductivity after the addition of graphene. Kelvin probe measurements have also been carried which reveals presence of low potential barrier at the interface between graphene and Bi2Te3 nanosheets which assist the flow of charge carriers thereby, increasing the mobility of the carriers. Thus, our results reveals a significant decrease in the lattice thermal conductivity (due to the formation of interfaces) and increase in the electron mobility (due to conducting paths at the interfaces) strongly participate in deciding observed enhancement in the thermoelectric figure of merit.

2.
Nano Lett ; 16(12): 7338-7345, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960470

RESUMO

Very high surface area, self-assembled, highly crystalline mesoporous SrTiO3 (STO) thin films were developed for photoelectrochemical water splitting. Much improved performance of these mesoporous films compared to planar STO thin films and any other form of STO such as single crystal samples and nanostructures was demonstrated. The high performance resulted from very large surface area films and optimization of carrier concentration.

3.
ACS Nano ; 18(27): 17958-17968, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38918951

RESUMO

Achieving robust and electrically controlled valley polarization in monolayer transition metal dichalcogenides (ML-TMDs) is a frontier challenge for realistic valleytronic applications. Theoretical investigations show that the integration of 2D materials with ferroelectrics is a promising strategy; however, an experimental demonstration has remained elusive. Here, we fabricate ferroelectric field-effect transistors using a ML-WSe2 channel and an Al0.68Sc0.32N (AlScN) ferroelectric dielectric and experimentally demonstrate efficient tuning as well as non-volatile control of valley polarization. We measure a large array of transistors and obtain a maximum valley polarization of ∼27% at 80 K with stable retention up to 5400 s. The enhancement in the valley polarization is ascribed to the efficient exciton-to-trion (X-T) conversion and its coupling with an out-of-plane electric field, viz., the quantum-confined Stark effect. This changes the valley depolarization pathway from strong exchange interactions to slow spin-flip intervalley scattering. Our research demonstrates a promising approach for achieving non-volatile control over valley polarization for practical valleytronic device applications.

4.
ACS Nano ; 17(8): 7487-7497, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37010369

RESUMO

Interlayer excitons (IXs) in two-dimensional (2D) heterostructures provide an exciting avenue for exploring optoelectronic and valleytronic phenomena. Presently, valleytronic research is limited to transition metal dichalcogenide (TMD) based 2D heterostructure samples, which require strict lattice (mis) match and interlayer twist angle requirements. Here, we explore a 2D heterostructure system with experimental observation of spin-valley layer coupling to realize helicity-resolved IXs, without the requirement of a specific geometric arrangement, i.e., twist angle or specific thermal annealing treatment of the samples in 2D Ruddlesden-Popper (2DRP) halide perovskite/2D TMD heterostructures. Using first-principle calculations, time-resolved and circularly polarized luminescence measurements, we demonstrate that Rashba spin-splitting in 2D perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-dependent optical selection rules to the IXs. Consequently, a robust valley polarization of ∼14% with a long exciton lifetime of ∼22 ns is obtained in type-II band aligned 2DRP/TMD heterostructure at ∼1.54 eV measured at 80 K. Our work expands the scope for studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.

5.
Adv Mater ; 34(18): e2108616, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34995372

RESUMO

Contact engineering is a prerequisite for achieving desirable functionality and performance of semiconductor electronics, which is particularly critical for organic-inorganic hybrid halide perovskites due to their ionic nature and highly reactive interfaces. Although the interfaces between perovskites and charge-transporting layers have attracted lots of attention due to the photovoltaic and light-emitting diode applications, achieving reliable perovskite/electrode contacts for electronic devices, such as transistors and memories, remains as a bottleneck. Herein, a critical review on the elusive nature of perovskite/electrode interfaces with a focus on the interfacial electrochemistry effects is presented. The basic guidelines of electrode selection are given for establishing non-polarized interfaces and optimal energy level alignment for perovskite materials. Furthermore, state-of-the-art strategies on interface-related electrode engineering are reviewed and discussed, which aim at achieving ohmic transport and eliminating hysteresis in perovskite devices. The role and multiple functionalities of self-assembled monolayers that offer a unique approach toward improving perovskite/electrode contacts are also discussed. The insights on electrode engineering pave the way to advancing stable and reliable perovskite devices in diverse electronic applications.

6.
Adv Mater ; 33(23): e2005000, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938612

RESUMO

Organic-inorganic mixed halide perovskites have emerged as an excellent class of materials with a unique combination of optoelectronic properties, suitable for a plethora of applications ranging from solar cells to light-emitting diodes and photoelectrochemical devices. Recent works have showcased hybrid perovskites for electronic applications through improvements in materials design, processing, and device stability. Herein, a comprehensive up-to-date review is presented on hybrid perovskite electronics with a focus on transistors and memories. These applications are supported by the fundamental material properties of hybrid perovskite semiconductors such as tunable bandgap, ambipolar charge transport, reasonable mobility, defect characteristics, and solution processability, which are highlighted first. Then, recent progresses on perovskite-based transistors are reviewed, covering aspects of fabrication process, patterning techniques, contact engineering, 2D versus 3D material selection, and device performance. Furthermore, applications of perovskites in nonvolatile memories and artificial synaptic devices are presented. The ambient instability of hybrid perovskites and the strategies to tackle this bottleneck are also discussed. Finally, an outlook and opportunities to develop perovskite-based electronics as a competitive and feasible technology are highlighted.

7.
ACS Omega ; 5(21): 11874-11882, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548366

RESUMO

Semiconductor heterostructures have attracted intensive research attention during the past few years owing to their great potential for energy and environmental remediation related applications. Effective optical absorption and efficient separation of photogenerated charge carriers are among the key factors for achieving high efficiency in a photocatalytic process. This mini-review summarizes state-of-the-art activities in designing nanosemiconductor heterostructures using multifunctional semiconductors for solar-to-hydrogen conversion and degradation of organic pollutants. Various novel design strategies such as semiconductor/graphene heterojunctions including graphene as a semimetal and photosensitizer, semiconductor/ferromagnetic, and semiconductor/ferroelectric nanoheterostructures for enhancing the performance of photocatalytic processes have been discussed. Finally, key challenges and future prospects for designing more efficient photocatalytic materials are briefly outlined.

8.
ACS Appl Mater Interfaces ; 11(49): 45683-45691, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710804

RESUMO

Ferroelectric polarization is an intriguing physical phenomenon for tuning charge-transport properties and finds application in a wide range of optoelectronic devices. So far, ferroelectric materials in a planar geometry or chemically grown nanostructures have been used. However, these structural architectures possess serious disadvantages such as small surface areas and structural defects, respectively, leading to reduced performance. Herein, the growth of room-temperature ferroelectric nanoporous/nanocolumnar structure of Ag,Nb-codoped SrTiO3 (Ag/Nb:STO) using pulsed laser deposition is reported and demonstrated to have enhanced photoelectrochemical (PEC) properties using ferroelectric polarization. By manipulating the external electrical bias, ∼3-fold enhancement in the photocurrent from 40 to 130 µA·cm-2 of film area is obtained. Concurrently, the flat-band potential is decreased from -0.55 to -1.13 V, revealing a giant ferroelectric tuning of the band alignment at the semiconductor surface and enhanced charge transfer. In addition, an electrochemical impedance spectroscopy study confirmed the tuning of the charge transfer with ferroelectric polarization. Our nanoporous ferroelectric-semiconductor approach offers a new platform with great potential for achieving highly efficient PEC devices for renewable energy applications.

9.
ACS Appl Mater Interfaces ; 11(33): 29821-29829, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31343861

RESUMO

Despite the exceptional performance of hybrid perovskites in photovoltaics, their susceptibility to ambient factors, particularly humidity, gives rise to the well-recognized stability issue. In the present work, microstripes of CH3NH3PbI3 are fabricated on flexible substrates, and they exhibit much larger response to relative humidity (RH) levels than continuous films and single crystals. The resistance of microstripes decreases by four orders of magnitude on changing the RH level from 10 to 95%. Fast response and recovery time of 100 and 500 ms, respectively, are recorded. Because bulk diffusion and defect trapping are much slower processes, our result indicates a surface-dictated mechanism related to hydrate formation and electron donation. In addition, water uptake behavior of perovskites is studied for the first time, which correlates well with the resistance decrease of the CH3NH3PbI3 microstripes. Furthermore, we report that the photoresponse decreases with increasing humidity, and at the 85% RH level, the perovskite device is not photoresponsive anymore. Our work underscores patterned structures as a new platform to investigate the interaction of hybrid perovskites with ambient factors and reveals the importance of the humidity effect on optoelectronic performance.

10.
Sci Rep ; 8(1): 6522, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695871

RESUMO

Efficient solar to hydrogen conversion using photoelectrochemical (PEC) process requires semiconducting photoelectrodes with advanced functionalities, while exhibiting high optical absorption and charge transport properties. Herein, we demonstrate magneto-tunable photocurrent in CoFe2O4 nanostructure film under low applied magnetic fields for efficient PEC properties. Photocurrent is enhanced from ~1.55 mA/cm2 to ~3.47 mA/cm2 upon the application of external magnetic field of 600 Oe leading to ~123% enhancement. This enhancement in the photocurrent is attributed to the reduction of optical bandgap and increase in the depletion width at CoFe2O4/electrolyte interface resulting in an enhanced generation and separation of the photoexcited charge carriers. The reduction of optical bandgap in the presence of magnetic field is correlated to the shifting of Co2+ ions from octahedral to tetrahedral sites which is supported by the Raman spectroscopy results. Electrochemical impedance spectroscopy results confirm a decrease in the charge transfer resistance at the CoFe2O4/electrolyte interface in the presence of magnetic field. This work evidences a coupling of photoexcitation properties with magnetic properties of a ferromagnetic-semiconductor and the effect can be termed as magnetophototronic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA