RESUMO
Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.
RESUMO
BACKGROUND: Digital phenotyping and monitoring tools are the most promising approaches to automatically detect upcoming depressive episodes. Especially, linguistic style has been seen as a potential behavioral marker of depression, as cross-sectional studies showed, for example, less frequent use of positive emotion words, intensified use of negative emotion words, and more self-references in patients with depression compared to healthy controls. However, longitudinal studies are sparse and therefore it remains unclear whether within-person fluctuations in depression severity are associated with individuals' linguistic style. METHODS: To capture affective states and concomitant speech samples longitudinally, we used an ambulatory assessment approach sampling multiple times a day via smartphones in patients diagnosed with depressive disorder undergoing sleep deprivation therapy. This intervention promises a rapid change of affective symptoms within a short period of time, assuring sufficient variability in depressive symptoms. We extracted word categories from the transcribed speech samples using the Linguistic Inquiry and Word Count. RESULTS: Our analyses revealed that more pleasant affective momentary states (lower reported depression severity, lower negative affective state, higher positive affective state, (positive) valence, energetic arousal and calmness) are mirrored in the use of less negative emotion words and more positive emotion words. CONCLUSION: We conclude that a patient's linguistic style, especially the use of positive and negative emotion words, is associated with self-reported affective states and thus is a promising feature for speech-based automated monitoring and prediction of upcoming episodes, ultimately leading to better patient care.
RESUMO
Cognitive skills are a strong predictor of a wide range of later life outcomes. Genetic and epigenetic associations across the genome explain some of the variation in general cognitive abilities in the general population and it is plausible that epigenetic associations might arise from prenatal environmental exposures and/or genetic variation early in life. We investigated the association between cord blood DNA methylation at birth and cognitive skills assessed in children from eight pregnancy cohorts within the Pregnancy And Childhood Epigenetics (PACE) Consortium across overall (total N = 2196), verbal (total N = 2206) and non-verbal cognitive scores (total N = 3300). The associations at single CpG sites were weak for all of the cognitive domains investigated. One region near DUSP22 on chromosome 6 was associated with non-verbal cognition in a model adjusted for maternal IQ. We conclude that there is little evidence to support the idea that variation in cord blood DNA methylation at single CpG sites is associated with cognitive skills and further studies are needed to confirm the association at DUSP22.
Assuntos
Metilação de DNA , Epigenoma , Criança , Cognição , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , GravidezRESUMO
The COVID-19 pandemic severely affected the lives of families and the well-being of both parents and their children. Various factors, including prenatal stress, dysregulated stress response systems, and genetics may have influenced how the stress caused by the pandemic impacted the well-being of different family members. The present work investigated if emotional well-being during the COVID-19 pandemic could be predicted by developmental stress-related and genetic factors. Emotional well-being of 7-10 year-old children (n = 263) and mothers (n = 241) (participants in a longitudinal German birth cohort (POSEIDON)) was assessed during the COVID-19 pandemic using the CRISIS questionnaire at two time periods (July 2020-October 2020; November 2020-February 2021). Associations of the children's and mothers' well-being with maternal perceived stress, of the children's well-being with their salivary and morning urine cortisol at 45 months, and polygenic risk scores (PRSs) for depression, schizophrenia, loneliness were investigated. Lower emotional well-being was observed in both children and mothers during compared to before the pandemic, with the children's but not the mothers' emotional well-being improving over the course of the pandemic. A positive association between the child and maternal emotional well-being was found. Prenatally assessed maternal perceived stress was associated with a lower well-being in children, but not in mothers. Cortisol measures and PRSs were not significantly associated with the children's emotional well-being. The present study confirms that emotional well-being of children and mothers are linked, and were negatively affected by the COVID-19 pandemic, with differences in development over time.
Assuntos
COVID-19 , Emoções , Sistema Endócrino , Saúde Mental , Mães , Herança Multifatorial , Estudos Longitudinais , Humanos , Saúde Mental/estatística & dados numéricos , COVID-19/epidemiologia , Sistema Endócrino/metabolismo , Masculino , Feminino , Criança , Adulto , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Predisposição Genética para Doença , Transtorno Depressivo Maior/genética , Esquizofrenia/genética , SolidãoRESUMO
DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.
Assuntos
Metilação de DNA , Epigenoma , Adolescente , Adulto , Idoso , Agressão , Criança , Pré-Escolar , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Longevidade , Pessoa de Meia-Idade , Adulto JovemRESUMO
Prenatal, perinatal, and postnatal factors have been shown to shape neurobiological functioning and alter the risk for mental disorders later in life. The gut microbiome is established early in life, and interacts with the brain via the brain-immune-gut axis. However, little is known about how the microbiome relates to early-life cognitive functioning in children. The present study, where the fecal microbiome of 380 children was characterized using 16S rDNA and metagenomic sequencing aimed to investigate the association between the microbiota and cognitive functioning of children at the age of 45 months measured with the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III). Overall the microbiome profile showed a significant association with cognitive functioning. A strong correlation was found between cognitive functioning and the relative abundance of an unidentified genus of the family Enterobacteriaceae. Follow-up mediation analyses revealed significant mediation effects of the level of this genus on the association of maternal smoking during pregnancy and current cigarette smoking with cognitive function. Metagenomic sequencing of a subset of these samples indicated that the identified genus was most closely related to Enterobacter asburiae. Analysis of metabolic potential showed a nominally significant association of cognitive functioning with the microbial norspermidine biosynthesis pathway. Our results indicate that alteration of the gut microflora is associated with cognitive functioning in childhood. Furthermore, they suggest that the altered microflora might interact with other environmental factors such as maternal cigarette smoking. Interventions directed at altering the microbiome should be explored in terms of improving cognitive functioning in young children.
Assuntos
Microbioma Gastrointestinal , Microbiota , Criança , Pré-Escolar , Cognição , Fezes , Feminino , Humanos , Gravidez , RNA Ribossômico 16SRESUMO
BACKGROUND: The use of mobile devices to continuously monitor objectively extracted parameters of depressive symptomatology is seen as an important step in the understanding and prevention of upcoming depressive episodes. Speech features such as pitch variability, speech pauses, and speech rate are promising indicators, but empirical evidence is limited, given the variability of study designs. OBJECTIVE: Previous research studies have found different speech patterns when comparing single speech recordings between patients and healthy controls, but only a few studies have used repeated assessments to compare depressive and nondepressive episodes within the same patient. To our knowledge, no study has used a series of measurements within patients with depression (eg, intensive longitudinal data) to model the dynamic ebb and flow of subjectively reported depression and concomitant speech samples. However, such data are indispensable for detecting and ultimately preventing upcoming episodes. METHODS: In this study, we captured voice samples and momentary affect ratings over the course of 3 weeks in a sample of patients (N=30) with an acute depressive episode receiving stationary care. Patients underwent sleep deprivation therapy, a chronotherapeutic intervention that can rapidly improve depression symptomatology. We hypothesized that within-person variability in depressive and affective momentary states would be reflected in the following 3 speech features: pitch variability, speech pauses, and speech rate. We parametrized them using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) from open-source Speech and Music Interpretation by Large-Space Extraction (openSMILE; audEERING GmbH) and extracted them from a transcript. We analyzed the speech features along with self-reported momentary affect ratings, using multilevel linear regression analysis. We analyzed an average of 32 (SD 19.83) assessments per patient. RESULTS: Analyses revealed that pitch variability, speech pauses, and speech rate were associated with depression severity, positive affect, valence, and energetic arousal; furthermore, speech pauses and speech rate were associated with negative affect, and speech pauses were additionally associated with calmness. Specifically, pitch variability was negatively associated with improved momentary states (ie, lower pitch variability was linked to lower depression severity as well as higher positive affect, valence, and energetic arousal). Speech pauses were negatively associated with improved momentary states, whereas speech rate was positively associated with improved momentary states. CONCLUSIONS: Pitch variability, speech pauses, and speech rate are promising features for the development of clinical prediction technologies to improve patient care as well as timely diagnosis and monitoring of treatment response. Our research is a step forward on the path to developing an automated depression monitoring system, facilitating individually tailored treatments and increased patient empowerment.
Assuntos
Transtorno Depressivo , Fala , Humanos , Projetos Piloto , Depressão/terapia , Privação do SonoRESUMO
INTRODUCTION: Formal genetics studies show that smoking is influenced by genetic factors; exploring this on the molecular level can offer deeper insight into the etiology of smoking behaviours. METHODS: Summary statistics from the latest wave of the GWAS and Sequencing Consortium of Alcohol and Nicotine (GSCAN) were used to calculate polygenic risk scores (PRS) in a sample of ~2200 individuals who smoke/individuals who never smoked. The associations of smoking status with PRS for Smoking Initiation (i.e., Lifetime Smoking; SI-PRS), and Fagerström Test for Nicotine Dependence (FTND) score with PRS for Cigarettes per Day (CpD-PRS) were examined, as were distinct/additive effects of parental smoking on smoking status. RESULTS: SI-PRS explained 10.56% of variance (Nagelkerke-R2) in smoking status (p=6.45x10-30). In individuals who smoke, CpD-PRS was associated with FTND score (R2=5.03%, p=1.88x10-12). Parental smoking alone explained R2=3.06% (p=2.43×10-12) of smoking status, and 0.96% when added to the most informative SI-PRS model (total R²=11.52%). CONCLUSION: These results show the potential utility of molecular genetic data for research investigating smoking prevention. The fact that PRS explains more variance than family history highlights progress from formal to molecular genetics; the partial overlap and increased predictive value when using both suggests the importance of combining these approaches.
Assuntos
Herança Multifatorial , Fumar , Tabagismo , Humanos , Herança Multifatorial/genética , Masculino , Feminino , Fumar/genética , Fumar/epidemiologia , Adulto , Tabagismo/genética , Tabagismo/epidemiologia , Estudo de Associação Genômica Ampla , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem , Predisposição Genética para Doença/genética , Estratificação de Risco GenéticoRESUMO
BACKGROUND: Alcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken. METHODS: As markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates. RESULTS: The majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain. CONCLUSIONS: The present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.
RESUMO
Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.
Assuntos
Ordem de Nascimento , Metilação de DNA , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Epigênese Genética , EpigenômicaRESUMO
OBJECTIVES: Bipolar disorder (BD) and major depressive disorder (MDD) are characterized by specific alterations of mood. In both disorders, alterations in cognitive domains such as impulsivity, decision-making, and risk-taking have been reported. Identification of similarities and differences of these domains in BD and MDD could give further insight into their etiology. The present study assessed impulsivity, decision-making, and risk-taking behavior in BD and MDD patients from bipolar multiplex families. METHODS: Eighty-two participants (BD type I, n = 25; MDD, n = 26; healthy relatives (HR), n = 17; and healthy controls (HC), n = 14) underwent diagnostic interviews and selected tests of a cognitive battery assessing neurocognitive performance across multiple subdomains including impulsivity (response inhibition and delay aversion), decision-making, and risk behavior. Generalized estimating equations (GEEs) were used to analyze whether the groups differed in the respective cognitive domains. RESULTS: Participants with BD and MDD showed higher impulsivity levels compared to HC; this difference was more pronounced in BD participants. BD participants also showed lower inhibitory control than MDD participants. Overall, suboptimal decision-making was associated with both mood disorders (BD and MDD). In risk-taking behavior, no significant impairment was found in any group. LIMITATIONS: As sample size was limited, it is possible that differences between BD and MDD may have escaped detection due to lack of statistical power. CONCLUSIONS: Our findings show that alterations of cognitive domains-while present in both disorders-are differently associated with BD and MDD. This underscores the importance of assessing such domains in addition to mere diagnosis of mood disorders.
RESUMO
Introduction: Family history of depression and childhood maltreatment are established risk factors for depression. However, how these factors are interrelated and jointly influence depression risk is not well understood. The present study investigated (i) if childhood maltreatment is associated with a family history of depression (ii) if family history and childhood maltreatment are associated with increased lifetime and current depression, and whether both factors interact beyond their main effects, and (iii) if family history affects lifetime and current depression via childhood maltreatment. Methods: Analyses were based on a subgroup of the first 100,000 participants of the German National Cohort (NAKO), with complete information (58,703 participants, mean age = 51.2 years, 53% female). Parental family history of depression was assessed via self-report, childhood maltreatment with the Childhood Trauma Screener (CTS), lifetime depression with self-reported physician's diagnosis and the Mini-International Neuropsychiatric Interview (MINI), and current depressive symptoms with the depression scale of the Patient Health Questionnaire (PHQ-9). Generalized linear models were used to test main and interaction effects. Mediation was tested using causal mediation analyses. Results: Higher frequencies of the childhood maltreatment measures were found in subjects reporting a positive family history of depression. Family history and childhood maltreatment were independently associated with increased depression. No statistical interactions of family history and childhood maltreatment were found for the lifetime depression measures. For current depressive symptoms (PHQ-9 sum score), an interaction was found, with stronger associations of childhood maltreatment and depression in subjects with a positive family history. Childhood maltreatment was estimated to mediate 7%-12% of the effect of family history on depression, with higher mediated proportions in subjects whose parents had a depression onset below 40 years. Abuse showed stronger associations with family history and depression, and higher mediated proportions of family history effects on depression than neglect. Discussion: The present study confirms the association of childhood maltreatment and family history with depression in a large population-based cohort. While analyses provide little evidence for the joint effects of both risk factors on depression beyond their individual effects, results are consistent with family history affecting depression via childhood maltreatment to a small extent.
RESUMO
Major Depression and Bipolar Disorder Type I (BIP-I) and Type II (BIP-II), are characterized by depressed, manic, and hypomanic episodes in which specific changes of physical activity, circadian rhythm, and sleep are observed. It is known that genetic factors contribute to variation in mood disorders and biological rhythms, but unclear to what extent there is an overlap between their underlying genetics. In the present study, data from genome-wide association studies were used to examine the genetic relationship between mood disorders and biological rhythms. We tested the genetic correlation of depression, BIP-I, and BIP-II with physical activity (overall physical activity, moderate activity, sedentary behaviour), circadian rhythm (relative amplitude), and sleep features (sleep duration, daytime sleepiness). Genetic correlations of depression, BIP-I, and BIP-II with biological rhythms were compared to discover commonalities and differences. A gene-based analysis tested for associations of single genes and common circadian genes with mood disorders. Depression was negatively correlated with overall physical activity and positively with sedentary behaviour, while BIP-I showed associations in the opposite direction. Depression and BIP-II had negative correlations with relative amplitude. All mood disorders were positively correlated with daytime sleepiness. Overall, we observed both genetic commonalities and differences across mood disorders in their relationships with biological rhythms: depression and BIP-I differed the most, while BIP-II was in an intermediate position. Gene-based analysis suggested potential targets for further investigation. The present results suggest shared genetic underpinnings for the clinically observed associations between mood disorders and biological rhythms. Research considering possible joint mechanisms may offer avenues for improving disease detection and treatment.
Assuntos
Transtorno Bipolar , Distúrbios do Sono por Sonolência Excessiva , Transtorno Bipolar/genética , Ritmo Circadiano/genética , Depressão/genética , Estudo de Associação Genômica Ampla , Humanos , Sono/genéticaRESUMO
(1) Background: Epigenome-wide association studies (EWAS) in peripheral blood have repeatedly found associations between tobacco smoking and aberrant DNA methylation (DNAm), but little is known about DNAm signatures of smoking in the human brain, which may contribute to the pathophysiology of addictive behavior observed in chronic smokers. (2) Methods: We investigated the similarity of DNAm signatures in matched blood and postmortem brain samples (n = 10). In addition, we performed EWASs in five brain regions belonging to the neurocircuitry of addiction: anterior cingulate cortex (ACC), Brodmann Area 9, caudate nucleus, putamen, and ventral striatum (n = 38-72). (3) Results: cg15925993 within the LOC339975 gene was epigenome-wide significant in the ACC. Of 16 identified differentially methylated regions, two (PRSS50 and LINC00612/A2M-AS1) overlapped between multiple brain regions. Functional enrichment was detected for biological processes related to neuronal development, inflammatory signaling and immune cell migration. Additionally, our results indicate the association of the well-known AHRR CpG site cg05575921 with smoking in the brain. (4) Conclusion: The present study provides further evidence of the strong relationship between aberrant DNAm and smoking.
RESUMO
Alcohol use disorder (AUD) is closely linked to the brain regions forming the neurocircuitry of addiction. Postmortem human brain tissue enables the direct study of the molecular pathomechanisms of AUD. This study aims to identify these mechanisms by examining differential DNA-methylation between cases with severe AUD (n = 53) and controls (n = 58) using a brain-region-specific approach, in which sample sizes ranged between 46 and 94. Samples of the anterior cingulate cortex (ACC), Brodmann Area 9 (BA9), caudate nucleus (CN), ventral striatum (VS), and putamen (PUT) were investigated. DNA-methylation levels were determined using the Illumina HumanMethylationEPIC Beadchip. Epigenome-wide association analyses were carried out to identify differentially methylated CpG-sites and regions between cases and controls in each brain region. Weighted correlation network analysis (WGCNA), gene-set, and GWAS-enrichment analyses were performed. Two differentially methylated CpG-sites were associated with AUD in the CN, and 18 in VS (q < 0.05). No epigenome-wide significant CpG-sites were found in BA9, ACC, or PUT. Differentially methylated regions associated with AUD case-/control status (q < 0.05) were found in the CN (n = 6), VS (n = 18), and ACC (n = 1). In the VS, the WGCNA-module showing the strongest association with AUD was enriched for immune-related pathways. This study is the first to analyze methylation differences between AUD cases and controls in multiple brain regions and consists of the largest sample to date. Several novel CpG-sites and regions implicated in AUD were identified, providing a first basis to explore epigenetic correlates of AUD.
Assuntos
Alcoolismo , Epigenoma , Consumo de Bebidas Alcoólicas , Alcoolismo/genética , Encéfalo , Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , HumanosRESUMO
Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. Postmortem human brain tissue enables the investigation of molecular mechanisms of AUD in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes in the ventral and dorsal striatum between individuals with AUD and controls, and to integrate the results with findings from genome- and epigenome-wide association studies (GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-methylation and gene expression (RNA-seq) data was generated from postmortem brain samples of 48 individuals with AUD and 51 controls from the ventral striatum (VS) and the dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes using DESeq2, performed gene-set enrichment analysis (GSEA), and tested enrichment of DE genes in results of GWASs using MAGMA. Weighted correlation network analysis (WGCNA) was performed for DNA-methylation and gene expression data and gene overlap was tested. Differential gene expression was observed in the dorsal (FDR < 0.05), but not the ventral striatum of AUD cases. In the VS, DE genes at FDR < 0.25 were overrepresented in a recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three brain regions. GSEA in CN and VS pointed towards cell-structure associated GO-terms and in PUT towards immune pathways. The WGCNA modules most strongly associated with AUD showed strong enrichment for immune response and inflammation pathways. Our integrated analysis of multi-omics data sets provides further evidence for the importance of immune- and inflammation-related processes in AUD.
Assuntos
Alcoolismo , Estriado Ventral , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , DNA , Humanos , InflamaçãoRESUMO
Bipolar disorder (BD) is a complex mood disorder with a strong genetic component. Recent studies suggest that microRNAs contribute to psychiatric disorder development. In BD, specific candidate microRNAs have been implicated, in particular miR-137, miR-499a, miR-708, miR-1908 and miR-2113. The aim of the present study was to determine the contribution of these five microRNAs to BD development. For this purpose, we performed: (i) gene-based tests of the five microRNA coding genes, using data from a large genome-wide association study of BD; (ii) gene-set analyses of predicted, brain-expressed target genes of the five microRNAs; (iii) resequencing of the five microRNA coding genes in 960 BD patients and 960 controls and (iv) in silico and functional studies for selected variants. Gene-based tests revealed a significant association with BD for MIR499A, MIR708, MIR1908 and MIR2113. Gene-set analyses revealed a significant enrichment of BD associations in the brain-expressed target genes of miR-137 and miR-499a-5p. Resequencing identified 32 distinct rare variants (minor allele frequency < 1%), all of which showed a non-significant numerical overrepresentation in BD patients compared to controls (p = 0.214). Seven rare variants were identified in the predicted stem-loop sequences of MIR499A and MIR2113. These included rs142927919 in MIR2113 (pnom = 0.331) and rs140486571 in MIR499A (pnom = 0.297). In silico analyses predicted that rs140486571 might alter the miR-499a secondary structure. Functional analyses showed that rs140486571 significantly affects miR-499a processing and expression. Our results suggest that MIR499A dysregulation might contribute to BD development. Further research is warranted to elucidate the contribution of the MIR499A regulated network to BD susceptibility.
Assuntos
Transtorno Bipolar , MicroRNAs , Transtorno Bipolar/genética , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , MicroRNAs/genéticaRESUMO
Both environmental (e.g. interpersonal traumatization during childhood and adolescence) and genetic factors may contribute to the development of Borderline Personality Disorder (BPD). Twin studies assessing borderline personality symptoms/features in the general population indicate that genetic factors underlying these symptoms/features are shared in part with the personality traits of the Five Factor Model (FFM) of personality-the "Big Five". In the present study, the genetic overlap of BPD with the Big Five -Openness to Experience, Conscientiousness, Extraversion, Agreeableness, and Neuroticism- was assessed. Linkage disequilibrium score regression was used to calculate genetic correlations between a genome-wide association study (GWAS) in central European populations on BPD (N = 2543) and GWAS on the Big Five (N = 76,551-122,886, Neuroticism N = 390,278). Polygenic scores (PGS) were calculated to test the association of the genetic disposition for the personality traits with BPD case-control status. Significant positive genetic correlations of BPD were found with Neuroticism (rg = 0.34, p = 6.3*10-5) and Openness (rg = 0.24, p = 0.036), but not with the other personality traits (all | rg | <0.14, all p > 0.30). A cluster and item-level analysis showed positive genetic correlations of BPD with the Neuroticism clusters "Depressed Affect" and "Worry", and with a broad range of Neuroticism items (N = 348,219-376,352). PGS analyses confirmed the genetic correlations, and found an independent contribution of the personality traits to BPD risk. The observed associations indicate a partially shared genetic background of BPD and the personality traits Neuroticism and Openness. Larger GWAS of BPD and the "Big Five" are needed to further explore the role of personality traits in the etiology of BPD.
Assuntos
Transtorno da Personalidade Borderline , Trauma Psicológico , Adolescente , Transtorno da Personalidade Borderline/genética , Estudo de Associação Genômica Ampla , Humanos , Relações Interpessoais , Biologia Molecular , NeuroticismoRESUMO
Electroconvulsive therapy (ECT) is a quick-acting and powerful antidepressant treatment considered to be effective in treating severe and pharmacotherapy-resistant forms of depression. Recent studies have suggested that epigenetic mechanisms can mediate treatment response and investigations about the relationship between the effects of ECT and DNA methylation have so far largely taken candidate approaches. In the present study, we examined the effects of ECT on the methylome associated with response in depressed patients (n = 34), testing for differentially methylated CpG sites before the first and after the last ECT treatment. We identified one differentially methylated CpG site associated with the effect of ECT response (defined as >50% decrease in Hamilton Depression Rating Scale score, HDRS), TNKS (q < 0.05; p = 7.15 × 10-8). When defining response continuously (ΔHDRS), the top suggestive differentially methylated CpG site was in FKBP5 (p = 3.94 × 10-7). Regional analyses identified two differentially methylated regions on chromosomes 8 (Sídák's p = 0.0031) and 20 (Sídák's p = 4.2 × 10-5) associated with ΔHDRS. Functional pathway analysis did not identify any significant pathways. A confirmatory look at candidates previously proposed to be involved in ECT mechanisms found CpG sites associated with response only at the nominally significant level (p < 0.05). Despite the limited sample size, the present study was able to identify epigenetic change associated with ECT response suggesting that this approach, especially when involving larger samples, has the potential to inform the study of mechanisms involved in ECT and severe and treatment-resistant depression.
Assuntos
Eletroconvulsoterapia , Antidepressivos/uso terapêutico , Epigenoma , Humanos , Escalas de Graduação Psiquiátrica , Resultado do TratamentoRESUMO
The two major subtypes of bipolar disorder (BD), BD-I and BD-II, are distinguished based on the presence of manic or hypomanic episodes. Historically, BD-II was perceived as a less severe form of BD-I. Recent research has challenged this concept of a severity continuum. Studies in large samples of unrelated patients have described clinical and genetic differences between the subtypes. Besides an increased schizophrenia polygenic risk load in BD-I, these studies also observed an increased depression risk load in BD-II patients. The present study assessed whether such clinical and genetic differences are also found in BD patients from multiplex families, which exhibit reduced genetic and environmental heterogeneity. Comparing 252 BD-I and 75 BD-II patients from the Andalusian Bipolar Family (ABiF) study, the clinical course, symptoms during depressive and manic episodes, and psychiatric comorbidities were analyzed. Furthermore, polygenic risk scores (PRS) for BD, schizophrenia, and depression were assessed. BD-I patients not only suffered from more severe symptoms during manic episodes but also more frequently showed incapacity during depressive episodes. A higher BD PRS was significantly associated with suicidal ideation. Moreover, BD-I cases exhibited lower depression PRS. In line with a severity continuum from BD-II to BD-I, our results link BD-I to a more pronounced clinical presentation in both mania and depression and indicate that the polygenic risk load of BD predisposes to more severe disorder characteristics. Nevertheless, our results suggest that the genetic risk burden for depression also shapes disorder presentation and increases the likelihood of BD-II subtype development.