Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 194(3): 1779-1793, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38039157

RESUMO

During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.


Assuntos
Proteínas de Transporte , Esterases , Litchi , Phytophthora , Melhoramento Vegetal , Transdução de Sinais
2.
New Phytol ; 242(6): 2682-2701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622771

RESUMO

Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.


Assuntos
Ácido Aspártico Proteases , Morte Celular , Resistência à Doença , Litchi , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Polissacarídeo-Liases , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Ácido Aspártico Proteases/metabolismo , Ácido Aspártico Proteases/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Nicotiana/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Litchi/genética , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Imunidade Vegetal/genética , Ligação Proteica
3.
Plant Physiol ; 193(1): 756-774, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37232407

RESUMO

Oomycete pathogens can secrete hundreds of effectors into plant cells to interfere with the plant immune system during infection. Here, we identified a Arg-X-Leu-Arg (RXLR) effector protein from the most destructive pathogen of litchi (Litchi chinensis Sonn.), Peronophythora litchii, and named it P. litchii avirulence homolog 202 (PlAvh202). PlAvh202 could suppress cell death triggered by infestin 1 or avirulence protein 3a/resistance protein 3a in Nicotiana benthamiana and was essential for P. litchii virulence. In addition, PlAvh202 suppressed plant immune responses and promoted the susceptibility of N. benthamiana to Phytophthora capsici. Further research revealed that PlAvh202 could suppress ethylene (ET) production by targeting and destabilizing plant S-adenosyl-L-methionine synthetase (SAMS), a key enzyme in the ET biosynthesis pathway, in a 26S proteasome-dependent manner without affecting its expression. Transient expression of LcSAMS3 induced ET production and enhanced plant resistance, whereas inhibition of ET biosynthesis promoted P. litchii infection, supporting that litchi SAMS (LcSAMS) and ET positively regulate litchi immunity toward P. litchii. Overall, these findings highlight that SAMS can be targeted by the oomycete RXLR effector to manipulate ET-mediated plant immunity.


Assuntos
Phytophthora infestans , Proteínas/metabolismo , Imunidade Vegetal/genética , Virulência , Etilenos/metabolismo , Doenças das Plantas , Nicotiana/genética , Nicotiana/metabolismo
4.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269874

RESUMO

C2H2 zinc finger is one of the most common motifs found in the transcription factors (TFs) in eukaryotes organisms, which have a broad range of functions, such as regulation of growth and development, stress tolerance and pathogenicity. Here, PlCZF1 was identified to encode a C2H2 zinc finger in the litchi downy blight pathogen Peronophythora litchii. PlCZF1 is conserved in P. litchii and Phytophthora species. In P. litchii, PlCZF1 is highly expressed in sexual developmental and early infection stages. We generated Δplczf1 mutants using the CRISPR/Cas9 method. Compared with the wild type, the Δplczf1 mutants showed no significant difference in vegetative growth and asexual reproduction, but were defective in oospore development and virulence. Further experiments revealed that the transcription of PlM90, PlLLP and three laccase encoding genes were down-regulated in the Δplczf1 mutant. Our results demonstrated that PlCZF1 is a vital regulator for sexual development and pathogenesis in P. litchii.


Assuntos
Litchi , Phytophthora , Litchi/genética , Doenças das Plantas/genética , Virulência/genética , Dedos de Zinco
5.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805371

RESUMO

As an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified PlMAPK2 as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete Peronophythora litchii. PlMAPK2 is conserved in P.litchii and Phytophthora species. We found that PlMAPK2 was up-regulated in sporangium, zoospore, cyst, cyst germination and early stage of infection. We generated PlMAPK2 knockout mutants using the CRISPR/Cas9 method. Compared with wild-type strain, the PlMAPK2 mutants showed no significant difference in vegetative growth, oospore production and sensitivity to various abiotic stresses. However, the sporangium release was severely impaired. We further found that the cleavage of the cytoplasm into uninucleate zoospores was disrupted in the PlMAPK2 mutants, and this developmental phenotype was accompanied by reduction in the transcription levels of PlMAD1 and PlMYB1 genes. Meanwhile, the PlMAPK2 mutants exhibited lower laccase activity and reduced virulence to lychee leaves. Overall, this study identified a MAPK that is critical for zoosporogenesis by regulating the sporangial cleavage and pathogenicity of P.litchii, likely by regulating laccase activity.


Assuntos
Litchi/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oomicetos/patogenicidade , Doenças das Plantas , Litchi/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Virulência
6.
Fungal Genet Biol ; 98: 39-45, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27939344

RESUMO

Sexual and asexual reproduction are two key processes in the pathogenic cycle of many filamentous pathogens. However in Peronophythora litchii, the causal pathogen for the litchi downy blight disease, critical regulator(s) of sexual or asexual differentiation has not been elucidated. In this study, we cloned a gene named PlM90 from P. litchii, which encodes a putative Puf RNA-binding protein. We found that PlM90 was highly expressed during asexual development, and much higher than that during sexual development, while relatively lower during cyst germination and plant infection. By polyethylene glycol (PEG)-mediated protoplast transformation, we generated three PlM90-silenced transformants and found a severely impaired ability in sexual spore production and a delay in stages of zoospore release and encystment. However, the pathogenicity of P. litchii was not affected by PlM90-silencing. Therefore we conclude that PlM90 specifically regulates the sexual and asexual differentiation of P. litchii.


Assuntos
Proteínas Fúngicas/genética , Phytophthora/genética , Proteínas de Ligação a RNA/genética , Reprodução Assexuada/genética , Esporos Fúngicos/genética , Sequência de Aminoácidos/genética , Frutas/genética , Frutas/microbiologia , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Litchi/microbiologia , Phytophthora/crescimento & desenvolvimento , Phytophthora/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/biossíntese , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade
7.
Nat Commun ; 15(1): 22, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167822

RESUMO

Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.


Assuntos
Litchi , Phytophthora , Litchi/metabolismo , Phytophthora/fisiologia , Polissacarídeo-Liases/metabolismo , Proteínas/metabolismo , Imunidade Vegetal , Morte Celular , Doenças das Plantas
8.
Front Microbiol ; 13: 984672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160220

RESUMO

Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.

9.
Front Plant Sci ; 12: 783438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899811

RESUMO

As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and ß-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.

10.
Mol Plant Pathol ; 21(3): 415-428, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31912634

RESUMO

Litchi downy blight, caused by the phytopathogenic oomycete Peronophythora litchii, results in tremendous economic loss in litchi production every year. To successfully colonize the host cell, Phytophthora species secret hundreds of RXLR effectors that interfere with plant immunity and facilitate the infection process. Previous work has already predicted 245 candidate RXLR effector-encoding genes in P. litchii, 212 of which have been cloned and tested for plant cell death-inducing activity in this study. We found three such RXLR effectors could trigger plant cell death through transient expression in Nicotiana benthamiana. Further experiments demonstrated that PlAvh142 could induce cell death and immune responses in several plants. We also found that PlAvh142 localized in both the cytoplasm and nucleus of plant cells. The cytoplasmic localization was critical for its cell death-inducing activity. Moreover, deletion either of the two internal repeats in PlAvh142 abolished the cell death-inducing activity. Virus-induced gene silencing assays showed that cell death triggered by PlAvh142 was dependent on the plant transduction components RAR1 (require for Mla12 resistance), SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90). Finally, knockout of PlAvh142 resulted in significantly attenuated P. litchii virulence on litchi plants, whereas the PlAvh142-overexpressed mutants were more aggressive. These data indicated that PlAvh142 could be recognized in plant cytoplasm and is an important virulence RXLR effector of P. litchii.


Assuntos
Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Morte Celular/genética , Citoplasma , Frutas/microbiologia , Phytophthora/genética , Phytophthora/metabolismo , Nicotiana/microbiologia , Virulência
11.
Data Brief ; 25: 104345, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485468

RESUMO

This data article provides supporting information to a related research article "Identification of volatile organic compounds for the biocontrol of postharvest litchi fruit pathogen Peronophythora litchii" (Zheng et al., 2019) [1]. The litchi downy blight (LDB) caused by Peronophythora litchii is a major postharvest disease that can severely damage litchi trees and harvested litchi fruit. This data article describes the analysis of volatile compounds (VOCs) in three bacterial biological control agents (BCAs) of LDB (Bacillus amyloliquefaciens PP19, Bacillus pumilus PI26, and Exiguobacterium acetylicum SI17) via gas chromatography/mass spectrometry (GC-MS). Volatile compounds produced by the three BCAs were captured at five culture time of 24, 36, 48, 60 and 72 h by a solid-phase micro extraction method. The chemical compositions were identified and their retention times as well as relative peak areas were analyzed. Compounds commonly produced at more than one time points were then subjected to in vitro (on petri dish) and in vivo (litchi fruit and leaves) evaluations for their antagonistic activities against the pathogen Peronophythora litchii.

12.
Front Microbiol ; 9: 426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568294

RESUMO

Mitogen-activated protein kinase (MAPK) pathways are ubiquitous and evolutionarily conserved signal transduction modules directing cellular respond to a diverse array of stimuli, in the eukaryotic organisms. In this study, PlMAPK10 was identified to encode a MAPK in Peronophythora litchii, the oomycete pathogen causing litchi downy blight disease. PlMAPK10, containing a specific and highly conserved dual phosphorylation lip sequence SEY (Serine-Glutamic-Tyrosine), represents a novel group of MAPKs as previously reported. Transcriptional profiling showed that PlMAPK10 expression was up-regulated in zoospore and cyst stages. To elucidate its function, the PlMAPK10 gene was silenced by stable transformation. PlMAPK10 silence did not impair oospore production, sporangium germination, zoospore encyst, or cyst germination but hindered hyphal growth, sporulation, pathogenicity, likely due to altering laccase activity. Over all, our results indicated that a MAPK encoded by PlMAPK10 gene in P. litchii is important for pathogenic development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA