Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994377

RESUMO

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Assuntos
Cianobactérias , Fitoplâncton , Lagos/microbiologia , Substâncias Húmicas , Eutrofização , Nutrientes , Fósforo/análise , China
2.
Ecol Evol ; 10(15): 8153-8165, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788968

RESUMO

Covariation in species richness and community structure across taxonomical groups (cross-taxon congruence) has practical consequences for the identification of biodiversity surrogates and proxies, as well as theoretical ramifications for understanding the mechanisms maintaining and sustaining biodiversity. We found there to exist a high cross-taxon congruence between phytoplankton, zooplankton, and fish in 73 large Scandinavian lakes across a 750 km longitudinal transect. The fraction of the total diversity variation explained by local environment alone was small for all trophic levels while a substantial fraction could be explained by spatial gradient variables. Almost half of the explained variation could not be resolved between local and spatial factors, possibly due to confounding issues between longitude and landscape productivity. There is strong consensus that the longitudinal gradient found in the regional fish community results from postglacial dispersal limitations, while there is much less evidence for the species richness and community structure gradients at lower trophic levels being directly affected by dispersal limitation over the same time scale. We found strong support for bidirectional interactions between fish and zooplankton species richness, while corresponding interactions between phytoplankton and zooplankton richness were much weaker. Both the weakening of the linkage at lower trophic levels and the bidirectional nature of the interaction indicates that the underlying mechanism must be qualitatively different from a trophic cascade.

3.
Environ Toxicol Chem ; 38(10): 2197-2208, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343756

RESUMO

Freshwaters are increasingly exposed to complex mixtures of pharmaceutical and personal care products (PPCPs) from municipal wastewater, which are known to alter freshwater communities' structure and functioning. However, their interaction with other disturbances and whether their combined effects can impact ecological resilience (i.e., the ability of a system to tolerate disturbances without altering the system's original structure and processes) remain unexplored. Using in situ mesocosms in 2 lakes with different nutrient levels (mesotrophic and eutrophic), we assessed whether a pulse exposure to sublethal concentrations of 12 PPCPs affects the ecological resilience of natural phytoplankton communities that experienced an abrupt environmental change involving the destabilization of the water column through mixing. Such mixing events are predicted to increase as the effects of climate change unfold, leading to more frequent storms, which disrupt stratification in lakes and force communities to restructure. We assessed their combined effects on community metrics (biomass, species richness, and composition) and their relative resilience using 4 indicators (cross-scale, within-scale, aggregation length, and gap length), inferred from phytoplankton communities by discontinuity analysis. The mixing disturbance alone had negligible effects on the community metrics, but when combined with chemical contaminants significant changes were measured: reducing total biomass, species richness, and altered community composition of phytoplankton. Once these changes occurred, they persisted until the end of the experiment (day 20), when the communities' structures from the 2 highest exposure levels diverged from the controls. The resilience indicators were not affected by PPCPs but differed significantly between lakes, with lower resilience found in the eutrophic lake. Thus, PPCPs can significantly alter community structures and reinforce mechanisms that maintain ecosystems in a "degraded state." Environ Toxicol Chem 2019;38:2197-2208. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Exposição Ambiental , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biodiversidade , Biomassa , Produtos Domésticos/toxicidade , Lagos/química , Filogenia , Água/química
4.
J Phycol ; 49(1): 54-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27008388

RESUMO

The ichthyotoxic flagellate Pseudochattonella has formed recurrent blooms in the North Sea, Skagerrak and Kattegat since 1998. Five strains of Pseudochattonella farcimen and two strains of P. verruculosa were examined in an assay comparing the light response of specific growth rates over a range of temperatures and salinities to get further knowledge on the autecology of members of this genus. Temperature optima were lower in P. farcimen (9°C-15°C) than in P. verruculosa (12°C-20°C). P. farcimen also showed a somewhat lower salinity optimum (18-26) than P. verruculosa (20-32). All strains showed light-dependent growth responses reaching saturation between 18 and 52 µmol · photons · m(-2) · s(-1) at optimal temperature and salinity conditions. Compensation point estimates ranged from 4.2 to 15 µmol · photons · m(-2)  · s(-1) . Loss rates increased with temperature and were lowest at salinities close to optimal growth conditions. Blooms of P. farcimen have been recorded in nature under conditions more similar to those minimizing loss rates rather than those maximizing growth rates in our culture study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA