Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(36): 31168-79, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21757724

RESUMO

Autoimmune thyroid diseases (AITD) arise from complex interactions between genetic, epigenetic, and environmental factors. Whole genome linkage scans and association studies have established thyroglobulin (TG) as a major AITD susceptibility gene. However, the causative TG variants and the pathogenic mechanisms are unknown. Here, we describe a genetic/epigenetic mechanism by which a newly identified TG promoter single-nucleotide polymorphism (SNP) variant predisposes to AITD. Sequencing analyses followed by case control and family-based association studies identified an SNP (-1623A→G) that was associated with AITD in the Caucasian population (p = 0.006). We show that the nucleotide substitution introduced by SNP (-1623A/G) modified a binding site for interferon regulatory factor-1 (IRF-1), a major interferon-induced transcription factor. Using chromatin immunoprecipitation, we demonstrated that IRF-1 binds to the 5' TG promoter motif, and the transcription factor binding correlates with active chromatin structure and is marked by enrichment of mono-methylated Lys-4 residue of histone H3, a signature of active transcriptional enhancers. Using reporter mutations and siRNA approaches, we demonstrate that the disease-associated allele (G) conferred increased TG promoter activity through IRF-1 binding. Finally, treatment of thyroid cells with interferon α, a known trigger of AITD, increased TG promoter activity only when it interacted with the disease-associated variant through IRF-1 binding. These results reveal a new mechanism of interaction between environmental (IFNα) and genetic (TG) factors to trigger AITD.


Assuntos
Autoimunidade/genética , Epigênese Genética , Interferon-alfa/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Tireoglobulina/genética , Doenças da Glândula Tireoide/genética , Sítios de Ligação , Estudos de Casos e Controles , Linhagem Celular , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Doenças da Glândula Tireoide/imunologia
2.
J Biol Chem ; 284(49): 34231-43, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19776016

RESUMO

Previously, we have shown that statistical synergism between amino acid variants in thyroglobulin (Tg) and specific HLA-DR3 pocket sequence signatures conferred a high risk for autoimmune thyroid disease (AITD). Therefore, we hypothesized that this statistical synergism mirrors a biochemical interaction between Tg peptides and HLA-DR3, which is key to the pathoetiology of AITD. To test this hypothesis, we designed a recombinant HLA-DR3 expression system that was used to express HLA-DR molecules harboring either AITD susceptibility or resistance DR pocket sequences. Next, we biochemically generated the potential Tg peptidic repertoire available to HLA-DR3 by separately treating 20 purified human thyroglobulin samples with cathepsins B, D, or L, lysosomal proteases that are involved in antigen processing and thyroid biology. Sequences of the cathepsin-generated peptides were then determined by matrix-assisted laser desorption ionization time-of-flight-mass spectroscopy, and algorithmic means were employed to identify putative AITD-susceptible HLA-DR3 binders. From four predicted peptides, we identified two novel peptides that bound strongly and specifically to both recombinant AITD-susceptible HLA-DR3 protein and HLA-DR3 molecules expressed on stably transfected cells. Intriguingly, the HLA-DR3-binding peptides we identified had a marked preference for the AITD-susceptibility DR signatures and not to those signatures that were AITD-protective. Structural analyses demonstrated the profound influence that the pocket signatures have on the interaction of HLA-DR molecules with Tg peptides. Our study suggests that interactions between Tg and discrete HLA-DR pocket signatures contribute to the initiation of AITD.


Assuntos
Regulação da Expressão Gênica , Antígeno HLA-DR3/metabolismo , Proteínas Recombinantes/química , Algoritmos , Animais , Doenças Autoimunes , Catepsinas/química , Linhagem Celular , Células HeLa , Antígenos de Histocompatibilidade Classe II , Humanos , Peptídeos/química , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tireoglobulina/química , Doenças da Glândula Tireoide/imunologia , Glândula Tireoide/metabolismo
3.
PLoS One ; 11(12): e0167718, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27930690

RESUMO

GLP-1 and glucagon regulate glucose metabolism through a network of metabolic pathways initiated upon binding to their specific receptors that belong to class B G-protein coupled receptors (GPCRs). The therapeutic potential of glucagon is currently being evaluated, while GLP-1 is already used in the treatment of type 2 diabetes and obesity. Development of a second generation of GLP-1 based therapeutics depends on a molecular and structural understanding of the interactions between the GLP-1 receptor (GLP-1R) and its ligand GLP-1. There is considerable sequence conservation between GLP-1 and glucagon and between the hGLP-1R and human glucagon receptor (hGCGR), yet each receptor recognizes only its own specific ligand. Glucagon receptors in fish and frogs also exhibit ligand selectivity only towards glucagon and not GLP-1. Based on competitive binding experiments and assays of increase in intracellular cAMP, we demonstrate here that a GPCR in zebrafish (Danio rerio) exhibits dual ligand selectivity towards GLP-1 and glucagon, a characteristic not found in mammals. Further, many structural features found in hGLP-1R and hGCGR are also found in this zebrafish GPCR (zfGPCR). We show this by mapping of its sequence and structural features onto the hGLP-1R and hGCGR based on their partial and complementary crystal structures. Thus, we propose that zfGPCR represents a dual GLP-1R/GCGR. The main differences between the three receptors are in their stalk regions that connect their N-terminal extracellular domains (NECDs) with their transmembrane domains and the absence of loop 3 in the NECD in zfGLP-1R/GCGR. These observations suggest that the interactions between GLP-1 and glucagon with loop 3 and the stalk regions may induce different conformational changes in hGLP-1R and hGCGR upon ligand binding and activation that lead to selective recognition of their native ligands.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucagon/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Ligantes , Receptores Acoplados a Proteínas G/química , Homologia de Sequência de Aminoácidos
4.
PLoS One ; 7(5): e37501, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662162

RESUMO

BACKGROUND: The etiology of the autoimmune thyroid diseases (AITDs), Graves' disease (GD) and Hashimoto's thyroiditis (HT), is largely unknown. However, genetic susceptibility is believed to play a major role. Two whole genome scans from Japan and from the US identified a locus on chromosome 8q24 that showed evidence for linkage with AITD and HT. Recent studies have demonstrated an association between thyroglobulin (Tg) polymorphisms and AITD in Caucasians, suggesting that Tg is a susceptibility gene on 8q24. OBJECTIVES: The objective of the study was to refine Tg association with AITD, by analyzing a panel of 25 SNPs across an extended 260 kb region of the Tg. METHODS: We studied 458 Japanese AITD patients (287 GD and 171 HT patients) and 221 matched Japanese control subjects in association studies. Case-control association studies were performed using 25 Tg single nucleotide polymorphisms (SNPs) chosen from a database of the Single Nucleotide Polymorphism Database (dbSNP). Haplotype analysis was undertaken using the computer program SNPAlyze version 7.0. PRINCIPAL FINDINGS AND CONCLUSIONS: In total, 5 SNPs revealed association with GD (P<0.05), with the strongest SNP associations at rs2256366 (P = 0.002) and rs2687836 (P = 0.0077), both located in intron 41 of the Tg gene. Because of the strong LD between these two strongest associated variants, we performed the haplotype analysis, and identified a major protective haplotype for GD (P = 0.001). These results suggested that the Tg gene is involved in susceptibility for GD and AITD in the Japanese.


Assuntos
Povo Asiático/genética , Doença de Graves/genética , Doença de Hashimoto/genética , Íntrons , Polimorfismo de Nucleotídeo Único , Tireoglobulina/genética , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA