Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835566

RESUMO

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Assuntos
Caspases , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Caspase 7/metabolismo , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Monócitos/metabolismo
2.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432196

RESUMO

This work identifies new ligands of the nucleoprotein N of SARS-CoV-2 by in silico screening, which used a new model of N, built from an Alphafold model refined by molecular dynamic simulations. The ligands were neuropeptides, such as substance P (1-7) and enkephalin, bound at a large site of the C-terminal or associated with the N-terminal ß-sheet. The BA4 and BA5 Omicron variants of N also exhibited a large site as in wt N, and an increased flexibility of the BA5 variant, enabling substance P binding. The binding sites of some ligands deduced from modeling in wt N were assessed by mutation studies in surface plasmon resonance experiments. Dynamic light scattering showed that the ligands impeded RNA binding to N, which likely inhibited replication. We suggest that the physiological role of these neuropeptides in neurotransmission, pain and vasodilation for cholecystokinin and substance P could be altered by binding to N. We speculate that N may link between viral replication and multiple pathways leading to long COVID-19 symptoms. Therefore, N may constitute a "danger hub" that needs to be inhibited, even at high cost for the host. Antivirals targeted to N may therefore reduce the risk of brain fog and stroke, and improve patients' health.


Assuntos
COVID-19 , Neuropeptídeos , Humanos , Nucleoproteínas , SARS-CoV-2 , Ligantes , Substância P , Transmissão Sináptica , Inflamação , Síndrome de COVID-19 Pós-Aguda
3.
Adv Exp Med Biol ; 1322: 195-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258742

RESUMO

Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Humanos , Influenza Humana/tratamento farmacológico , Replicação Viral
4.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946802

RESUMO

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Naproxeno/farmacologia , Nucleoproteínas/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Animais , Linhagem Celular , Chlorocebus aethiops , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Nucleoproteínas/metabolismo , SARS-CoV-2/fisiologia , Células Vero , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
5.
Biochim Biophys Acta Gen Subj ; 1862(6): 1263-1275, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524539

RESUMO

BACKGROUND: Targeting cells of the host immune system is a promising approach to fight against Influenza A virus (IAV) infection. Macrophage cells use the NADPH oxidase-2 (NOX2) enzymatic complex as a first line of defense against pathogens by generating superoxide ions O2- and releasing H2O2. Herein, we investigated whether targeting membrane -embedded NOX2 decreased IAV entry via raft domains and reduced inflammation in infected macrophages. METHODS: Confocal microscopy and western blots monitored levels of the viral nucleoprotein NP and p67phox, NOX2 activator subunit, Elisa assays quantified TNF-α levels in LPS or IAV-activated mouse or porcine alveolar macrophages pretreated with a fluorescent NOX inhibitor, called nanoshutter NS1. RESULTS: IAV infection in macrophages promoted p67phox translocation to the membrane, rafts clustering and activation of the NOX2 complex at early times. Disrupting rafts reduced intracellular viral NP. NS1 markedly reduced raft clustering and viral entry by binding to the C-terminal of NOX2 also characterized in vitro. NS1 decrease of TNF-α release depended on the cell type. CONCLUSION: NOX2 participated in IAV entry and raft-mediated endocytosis. NOX2 inhibition by NS1 reduced viral entry. NS1 competition with p67phox for NOX2 binding shown by in silico models and cell-free assays was in agreement with NS1 inhibiting p67phox translocation to membrane-embedded NOX2 in mouse and porcine macrophages. GENERAL SIGNIFICANCE: We introduce NS1 as a compound targeting NOX2, a critical enzyme controlling viral levels and inflammation in macrophages and discuss the therapeutic relevance of targeting the C-terminal of NADPH oxidases by probes like NS1 in viral infections.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , NADPH Oxidase 2/antagonistas & inibidores , Infecções por Orthomyxoviridae/imunologia , Fosfoproteínas/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus , Animais , Células Cultivadas , Inflamação/metabolismo , Inflamação/virologia , Vírus da Influenza A , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia
6.
Biochemistry ; 55(31): 4259-62, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27431776

RESUMO

The structure of the ribonucleoprotein complexes is crucial to viral transcription and replication of influenza virus, but association of the nucleoprotein (NP) with the polymerase remains to be characterized at the molecular level. Here, we identify a peptide of the polymerase acidic subunit PA(1-27) that associates with NP. Docking and molecular dynamics simulations suggest a similar NP binding site with PA(1-27) and PA(1-186). The PA(1-27)-NP complex is characterized by surface plasmon resonance and fluorescence using recombinant NP proteins and by pull-down assays in infected cells. The PA(1-27)-NP complex may have a role in the final steps of transcription and replication.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Proteínas de Ligação a RNA/química , RNA Polimerase Dependente de RNA/química , Proteínas do Core Viral/química , Proteínas Virais/química , Animais , Cães , Vírus da Influenza A Subtipo H1N1/fisiologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Proteínas do Nucleocapsídeo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Proteínas Recombinantes/química , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície
7.
J Virol ; 89(21): 11129-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246564

RESUMO

UNLABELLED: Presently, respiratory syncytial virus (RSV), the main cause of severe respiratory infections in infants, cannot be treated efficiently with antivirals. However, its RNA-dependent polymerase complex offers potential targets for RSV-specific drugs. This includes the recognition of its template, the ribonucleoprotein complex (RNP), consisting of genomic RNA encapsidated by the RSV nucleoprotein, N. This recognition proceeds via interaction between the phosphoprotein P, which is the main polymerase cofactor, and N. The determinant role of the C terminus of P, and more particularly of the last residue, F241, in RNP binding and viral RNA synthesis has been assessed previously. Here, we provide detailed structural insight into this crucial interaction for RSV polymerase activity. We solved the crystallographic structures of complexes between the N-terminal domain of N (N-NTD) and C-terminal peptides of P and characterized binding by biophysical approaches. Our results provide a rationale for the pivotal role of F241, which inserts into a well-defined N-NTD pocket. This primary binding site is completed by transient contacts with upstream P residues outside the pocket. Based on the structural information of the N-NTD:P complex, we identified inhibitors of this interaction, selected by in silico screening of small compounds, that efficiently bind to N and compete with P in vitro. One of the compounds displayed inhibitory activity on RSV replication, thereby strengthening the relevance of N-NTD for structure-based design of RSV-specific antivirals. IMPORTANCE: Respiratory syncytial virus (RSV) is a widespread pathogen that is a leading cause of acute lower respiratory infections in infants worldwide. RSV cannot be treated efficiently with antivirals, and no vaccine is presently available, with the development of pediatric vaccines being particularly challenging. Therefore, there is a need for new therapeutic strategies that specifically target RSV. The interaction between the RSV phosphoprotein P and the ribonucleoprotein complex is critical for viral replication. In this study, we identified the main structural determinants of this interaction, and we used them to screen potential inhibitors in silico. We found a family of molecules that were efficient competitors of P in vitro and showed inhibitory activity on RSV replication in cellular assays. These compounds provide a basis for a pharmacophore model that must be improved but that holds promises for the design of new RSV-specific antivirals.


Assuntos
Antivirais/química , Modelos Moleculares , Nucleocapsídeo/química , Fosfoproteínas/química , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/química , Calorimetria , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Proteínas Luminescentes , Espectroscopia de Ressonância Magnética , Nucleocapsídeo/metabolismo , Fosfoproteínas/metabolismo , Conformação Proteica , Vírus Sincicial Respiratório Humano/metabolismo , Difração de Raios X , Proteína Vermelha Fluorescente
8.
PLoS Pathog ; 9(3): e1003275, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555270

RESUMO

Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt) nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection.


Assuntos
Vírus da Influenza A/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cristalização , Vírus da Influenza A/química , Vírus da Influenza A/ultraestrutura , Mutação , Tamanho da Partícula , Fosforilação , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Viral/química , Ribonucleoproteínas/química , Proteínas Virais/química
9.
Proc Natl Acad Sci U S A ; 109(31): 12526-31, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802674

RESUMO

We report the structure-based design and synthesis of a unique NOS inhibitor, called nanoshutter NS1, with two-photon absorption properties. NS1 targets the NADPH site of NOS by a nucleotide moiety mimicking NADPH linked to a conjugated push-pull chromophore with nonlinear absorption properties. Because NS1 could not provide reducing equivalents to the protein and competed with NADPH binding, it efficiently inhibited NOS catalysis. NS1 became fluorescent once bound to NOS with an excellent signal-to-noise ratio because of two-photon excitation avoiding interference from the flavin-autofluorescence and because free NS1 was not fluorescent in aqueous solutions. NS1 fluorescence enhancement was selective for constitutive NOS in vitro, in particular for endothelial NOS (eNOS). Molecular dynamics simulations suggested that two variable residues among NOS isoforms induced differences in binding of NS1 and in local solvation around NS1 nitro group, consistent with changes of NS1 fluorescence yield. NS1 colocalized with eNOS in living human umbilical vein endothelial cells. Thus, NS1 constitutes a unique class of eNOS probe with two-photon excitation in the 800-950-nm range, with great perspectives for eNOS imaging in living tissues.


Assuntos
Corantes Fluorescentes , Células Endoteliais da Veia Umbilical Humana/enzimologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , NADP , Óxido Nítrico Sintase Tipo III , Catálise , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Simulação de Dinâmica Molecular , NADP/análogos & derivados , NADP/síntese química , NADP/química , NADP/farmacologia , Óxido Nítrico/biossíntese , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo
10.
Antimicrob Agents Chemother ; 57(5): 2231-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23459490

RESUMO

The nucleoprotein (NP) binds the viral RNA genome and associates with the polymerase in a ribonucleoprotein complex (RNP) required for transcription and replication of influenza A virus. NP has no cellular counterpart, and the NP sequence is highly conserved, which led to considering NP a hot target in the search for antivirals. We report here that monomeric nucleoprotein can be inhibited by a small molecule binding in its RNA binding groove, resulting in a novel antiviral against influenza A virus. We identified naproxen, an anti-inflammatory drug that targeted the nucleoprotein to inhibit NP-RNA association required for NP function, by virtual screening. Further docking and molecular dynamics (MD) simulations identified in the RNA groove two NP-naproxen complexes of similar levels of interaction energy. The predicted naproxen binding sites were tested using the Y148A, R152A, R355A, and R361A proteins carrying single-point mutations. Surface plasmon resonance, fluorescence, and other in vitro experiments supported the notion that naproxen binds at a site identified by MD simulations and showed that naproxen competed with RNA binding to wild-type (WT) NP and protected active monomers of the nucleoprotein against proteolytic cleavage. Naproxen protected Madin-Darby canine kidney (MDCK) cells against viral challenges with the H1N1 and H3N2 viral strains and was much more effective than other cyclooxygenase inhibitors in decreasing viral titers of MDCK cells. In a mouse model of intranasal infection, naproxen treatment decreased the viral titers in mice lungs. In conclusion, naproxen is a promising lead compound for novel antivirals against influenza A virus that targets the nucleoprotein in its RNA binding groove.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Naproxeno/farmacologia , Nucleoproteínas/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/química , Antivirais/química , Sítios de Ligação , Cães , Descoberta de Drogas , Reposicionamento de Medicamentos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naproxeno/química , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Mutação Puntual , Ligação Proteica , RNA Viral/química , RNA Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
11.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830003

RESUMO

ROS in cancer cells play a key role in pathways regulating cell death, stemness maintenance, and metabolic reprogramming, all of which have been implicated in resistance to chemo/ immunotherapy. Adjusting ROS levels to reverse the resistance of cancer cells without impairing normal cell functions is a new therapeutic avenue. In this paper, we describe new inhibitors of NADPH oxidase (NOX), a key enzyme in many cells of the tumor microenvironment. The first inhibitor, called Nanoshutter-1, NS1, decreased the level of tumor-promoting "M2" macrophages differentiated from human blood monocytes. NS1 disrupted the active NADPH oxidase-2 (NOX2) complex at the membrane and in the mitochondria of the macrophages, as shown by confocal microscopy. As one of the characteristics of tumor invasion is hypoxia, we tested whether NS1 would affect vascular reactivity by reducing ROS or NO levels in wire and pressure myograph experiments on isolated blood vessels. The results show that NS1 vasodilated blood vessels and would likely reduce hypoxia. Finally, as both NOX2 and NOX4 are key proteins in tumors and their microenvironment, we investigated whether NS1 would probe these proteins differently. Models of NOX2 and NOX4 were generated by homology modeling, showing structural differences at their C-terminal NADPH site, in particular in their last Phe. Thus, the NADPH site presents an unexploited chemical space for addressing ligand specificity, which we exploited to design a novel NOX2-specific inhibitor targeting variable NOX2 residues. With the proper smart vehicle to target specific cells of the microenvironment as TAMs, NOX2-specific inhibitors could open the way to new precision therapies.

12.
Antioxidants (Basel) ; 10(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064498

RESUMO

Specific inhibition of NADPH oxidases (NOX) and NO-synthases (NOS), two enzymes associated with redox stress in tumor cells, has aroused great pharmacological interest. Here, we show how these enzymes distinguish between isomeric 2'- and 3'-phosphate derivatives, a difference used to improve the specificity of inhibition by isolated 2'- and 3'-phosphate isomers of our NADPH analogue NS1. Both isomers become fluorescent upon binding to their target proteins as observed by in vitro assay and in vivo imaging. The 2'-phosphate isomer of NS1 exerted more pronounced effects on NOS and NOX-dependent physiological responses than the 3'-phosphate isomer did. Docking and molecular dynamics simulations explain this specificity at the level of the NADPH site of NOX and NOS, where conserved arginine residues distinguished between the 2'-phosphate over the 3'-phosphate group, in favor of the 2'-phosphate.

13.
J Mol Recognit ; 23(4): 379-88, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20029835

RESUMO

Achieving molecular recognition of NADPH binding sites is a compelling strategy to control many redox biological processes. The NADPH sites recognize the ubiquitous NADPH cofactor via highly conserved binding interactions, despite differences in the regulation of the hydride transfer in redox active proteins. We recently developed a photoactive NADPH substitute, called nanotrigger NT synchronizing the initiation of enzymatic catalysis of the endothelial NO-synthase (eNOS) with a laser pulse. Spatial and temporal control of enzymatic activity by such a designed light-driven activator would benefit from achieving molecular selectivity, i.e. activation of a single NADPH-mediated enzyme.In this work, we probe the ability of NT to discriminate between two NADPH sites with light. The selected NADPH sites belong to dihydrofolate reductase dihydrofolate reductase enzyme (DHFR) and endothelial NO-synthase (eNOS). Ultrafast kinetics showed that NT could not activate DHFR catalysis with a laser pulse in contrast with the observed trigger of eNOS catalysis leading to NO formation. Homology modelling, molecular dynamics simulations showed that NT discriminated between the two NADPH sites by different donor to acceptor distances and by local steric effects hindering light activation of DHFR catalysis. The data suggested that the narrow NADPH site required a tight fit of the nanotrigger at a suitable distance/angle to the electron acceptor for a specific activation of the catalysis. The ability of the nanotrigger to activate eNOS combined with a low reactivity in unfavourable NADPH sites makes NT a highly promising tool for targeting eNOS in endothelial cells with a laser pulse.


Assuntos
Luz , NADP/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Sítios de Ligação , Catálise/efeitos da radiação , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Estrutura Secundária de Proteína , Tetra-Hidrofolato Desidrogenase/química
14.
Biochem J ; 418(3): 673-82, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19046140

RESUMO

Nitrite (NO(2)(-)) recycling to nitric oxide (NO) is catalysed by a number of enzymes and induces a protective vasodilation effect under hypoxia/ischaemia. In the present work, we tested the in vitro ability of the three NOS (nitric oxide synthase) isoforms to release NO from nitrite under anoxia using electrochemical detection, chemiluminescence and absorption spectroscopy. The release of free NO from anoxic nitrite solutions at 15 muM was specific to the endothelial NOS isoform (eNOS) and did not occur with the neuronal (nNOS) or inducible (iNOS) isoforms. Unlike xanthine oxidase, the eNOS reductase domain did not recycle nitrite to NO, and wild-type eNOS did not reduce nitrate. Our data suggest that structural and, by inference, dynamic differences between nNOS and eNOS in the distal haem side account for eNOS being the only isoform capable of converting nitrite into NO at pH 7.6. In human dermal microvascular endothelial cells under careful control of oxygen tension, the rates of NO formation determined by chemiluminescence were enhanced approximately 3.6- and approximately 8.3-fold under hypoxia (2 p.p.m. O(2)) and anoxia (argon) respectively compared with normoxia ( approximately 22 p.p.m. O(2)) using 10 muM extracellular nitrite. NOS inhibitors inhibited this hypoxic NO release. Our data show that eNOS is unique in that it releases NO under all oxygen levels from normoxia to complete anoxia at physiological micromolar nitrite concentrations. The magnitude of the hypoxic NO release by the endothelial cells suggest that the endothelium could provide an appropriate response to acute episodic ischaemia and may explain the observed eNOS-expression-specific protective effect as a short-term response in animal models of acute hypoxia.


Assuntos
Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Nitrito Redutases/metabolismo , Células Endoteliais/metabolismo , Nitritos/farmacologia
15.
Antioxidants (Basel) ; 9(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31972975

RESUMO

: A specific light trigger for activating endothelial Nitric Oxide-Synthase (eNOS) in real time would be of unique value to decipher cellular events associated with eNOS activation or to generate on demand cytotoxic levels of NO at specific sites for cancer research. We previously developed novel tools called nanotriggers (NT), which recognized constitutive NO-synthase, eNOS or neuronal NOS (nNOS), mainly via their 2' phosphate group which is also present in NADPH in its binding site. Laser excitation of NT1 bound to eNOS triggered recombinant NOS activity and released NO. We recently generated new NTs carrying a 2' or 3' carboxylate group or two 2' and 3' carboxylate moieties replacing the 2' phosphate group of NADPH. Among these new NT, only the 3' carboxylate derivative released NO from endothelial cells upon laser activation. Here, Molecular Dynamics (MD) simulations showed that the 3' carboxylate NT formed a folded structure with a hydrophobic hub, inducing a good stacking on FAD that likely drove efficient activation of nNOS. This NT also carried an additional small charged group which increased binding to e/nNOS; fluorescence measurements determined a 20-fold improved affinity upon binding to nNOS as compared to NT1 affinity. To gain in specificity for eNOS, we augmented a previous NT with a "hook" targeting variable residues in the NADPH site of eNOS. We discuss the potential of exploiting the chemical diversity within the NADPH site of eNOS for reversal of endothelial dysfunction in cells and for controlled generation of cytotoxic NO-derived species in cancer tissues.

16.
Med Res Rev ; 29(5): 683-741, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19219851

RESUMO

In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and nonenzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue.


Assuntos
Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxigênio/metabolismo , Transdução de Sinais , Animais , Humanos , Nitratos/sangue , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/sangue , Oxirredução , Oxigênio/sangue , Ratos , Traumatismo por Reperfusão/metabolismo , Vasodilatação/fisiologia
17.
Chembiochem ; 10(4): 690-701, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19222033

RESUMO

Nitric oxide synthases (NOSs) are unique flavohemoproteins with various roles in mammalian physiology. Constitutive NOS catalysis is initiated by fast hydride transfer from NADPH, followed by slower structural rearrangements. We used a photoactive nanotrigger (NT) to study the initial electron transfer to FAD in native neuronal NOS (nNOS) catalysis. Molecular modeling and fluorescence spectroscopy showed that selective NT binding to NADPH sites close to FAD is able to override Phe1395 regulation. Ultrafast injection of electrons into the protein electron pathway by NT photoactivation through the use of a femtosecond laser pulse is thus possible. We show that calmodulin, required for NO synthesis by constitutive NOS, strongly promotes intramolecular electron flow (6.2-fold stimulation) by a mechanism involving proton transfer to the reduced FAD(-) site. Site-directed mutagenesis using the S1176A and S1176T mutants of nNOS supports this hypothesis. The NT synchronized the initiation of flavoenzyme catalysis, leading to the formation of NO, as detected by EPR. This NT is thus promising for time-resolved X-ray and other cellular applications.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/biossíntese , Sítios de Ligação , Biocatálise , Calmodulina/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Flavina-Adenina Dinucleotídeo/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , NADP/metabolismo , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/genética , Processos Fotoquímicos , Mutação Puntual , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
18.
Biochim Biophys Acta Gen Subj ; 1863(6): 1127-1137, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986510

RESUMO

BACKGROUND: Nitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2'- or/and 3'-position(s) of the ribose in the adenosine moiety, instead of a 2'-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety). Here, we addressed the ability of NTs to photoinduce eNOS-dependent NO production in endothelial cells. METHODS: The cellular fate of NTs and their photoinduced effects were studied using multiphoton fluorescence imaging, cell viability assays and a BODIPY-derived NO probe for NO measurements. The eNOS dependence of photoinduced NO production was addressed using two NOS inhibitors (NS1 and L-NAME) targeting the reductase and the oxygenase domains, respectively. RESULTS: We found that, two compounds, those bearing a single carboxymethyl group on the 3'-position of the ribose, colocalize with the Golgi apparatus (the main intracellular location of eNOS) and display high intracellular two-photon brightness. Furthermore, a eNOS-dependent photooxidation was observed for these two compounds only, which is accompanied by a substantial intracellular NO production accounting for specific photocytotoxic effects. CONCLUSIONS: We show for the first time that NT photoactivation efficiently triggers electron flow at the eNOS level and increases the basal production of NO by endothelial cells. GENERAL SIGNIFICANCE: Efficient photoactivatable NADPH analogues targeting NOS could have important implications for generating apoptosis in tumor cells or modulating NO-dependent physiological processes.


Assuntos
Complexo de Golgi/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Luz , NADP , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Humanos , NADP/análogos & derivados , NADP/farmacologia
19.
Chemphyschem ; 9(16): 2325-31, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-18844320

RESUMO

We have recently designed a nanotrigger (NT), a photoactive molecule addressing the NADPH sites of proteins. This nanotrigger has a 10(3) times larger two-photon cross-section compared to the ubiquitous NADPH cofactor. In this work, we tested whether two-photon excitation of the bound NT to NADPH sites may be used to initiate enzymatic catalysis by appropriate electron injection. To establish proof of principle, we monitored the ultrafast absorption of NT bound to the fully active endothelial NO-Synthase (eNOS) following excitation by one and two-photons at 405 and 810 nm, respectively. Electron injection from NT* to FAD in eNOS initiated the catalytic cycle in 15+/-3 ps at both exciting wavelengths. The data proved for the first time that electron transfer can be promoted by two-photon excitation. We also show that the nanotrigger decays faster in homogeneous solvents than in the NADPH site of proteins, suggesting that hindered environments modified the natural decay of NT. The nanotrigger provides a convenient way of synchronizing an ensemble of proteins in solution with a femtosecond laser pulse. The ability of NT to initiate NOS catalysis by two-photon excitation may be exploited for controlled and localized release of free NO in cells with enhanced spatial and temporal resolution.


Assuntos
Nanopartículas/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fótons , Catálise , Transporte de Elétrons , Endotélio/metabolismo , Flavinas/química , Flavinas/metabolismo , Cinética , NADP/química , NADP/metabolismo , Óxido Nítrico Sintase Tipo III/química , Fatores de Tempo
20.
J Med Chem ; 61(16): 7202-7217, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30028133

RESUMO

The nucleoprotein (NP) of influenza A virus (IAV) required for IAV replication is a promising target for new antivirals. We previously identified by in silico screening naproxen being a dual inhibitor of NP and cyclooxygenase COX2, thus combining antiviral and anti-inflammatory effects. However, the recently shown strong COX2 antiviral potential makes COX2 inhibition undesirable. Here we designed and synthesized two new series of naproxen analogues called derivatives 2, 3, and 4 targeting highly conserved residues of the RNA binding groove, stabilizing NP monomer without inhibiting COX2. Derivative 2 presented improved antiviral effects in infected cells compared to that of naproxen and afforded a total protection of mice against a lethal viral challenge. Derivative 4 also protected infected cells challenged with circulating 2009-pandemic and oseltamivir-resistant H1N1 virus. This improved antiviral effect likely results from derivatives 2 and 4 inhibiting NP-RNA and NP-polymerase acidic subunit PA N-terminal interactions.


Assuntos
Antivirais/química , Antivirais/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Naproxeno/análogos & derivados , Células A549 , Animais , Sítios de Ligação , Inibidores de Ciclo-Oxigenase 2/química , Cães , Desenho de Fármacos , Reposicionamento de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Feminino , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/tratamento farmacológico , Influenza Humana/patologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Naproxeno/farmacologia , Proteínas do Nucleocapsídeo , Oseltamivir/farmacologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA