RESUMO
The fermionic Kitaev chain is a canonical model featuring topological Majorana zero modes1. We report the experimental realization of its bosonic analogue2 in a nano-optomechanical network, in which the parametric interactions induce beam-splitter coupling and two-mode squeezing among the nanomechanical modes, analogous to hopping and p-wave pairing in the fermionic case, respectively. This specific structure gives rise to a set of extraordinary phenomena in the bosonic dynamics and transport. We observe quadrature-dependent chiral amplification, exponential scaling of the gain with system size and strong sensitivity to boundary conditions. All these are linked to the unique non-Hermitian topological nature of the bosonic Kitaev chain. We probe the topological phase transition and uncover a rich dynamical phase diagram by controlling interaction phases and amplitudes. Finally, we present an experimental demonstration of an exponentially enhanced response to a small perturbation3,4. These results represent the demonstration of a new synthetic phase of matter whose bosonic dynamics do not have fermionic parallels, and we have established a powerful system for studying non-Hermitian topology and its applications for signal manipulation and sensing.
RESUMO
Imposing chirality on a physical system engenders unconventional energy flow and responses, such as the Aharonov-Bohm effect1 and the topological quantum Hall phase for electrons in a symmetry-breaking magnetic field. Recently, great interest has arisen in combining that principle with broken Hermiticity to explore novel topological phases and applications2-16. Here we report phononic states with unique symmetries and dynamics that are formed when combining the controlled breaking of time-reversal symmetry with non-Hermitian dynamics. Both of these are induced through time-modulated radiation pressure forces in small nano-optomechanical networks. We observe chiral energy flow among mechanical resonators in a synthetic dimension and Aharonov-Bohm tuning of their eigenmodes. Introducing particle-non-conserving squeezing interactions, we observe a non-Hermitian Aharonov-Bohm effect in ring-shaped networks in which mechanical quasiparticles experience parametric gain. The resulting complex mode spectra indicate flux-tuning of squeezing, exceptional points, instabilities and unidirectional phononic amplification. This rich phenomenology points the way to exploring new non-Hermitian topological bosonic phases and applications in sensing and transport that exploit spatiotemporal symmetry breaking.
RESUMO
Membranes of suspended two-dimensional materials show a large variability in mechanical properties, in part due to static and dynamic wrinkles. As a consequence, experiments typically show a multitude of nanomechanical resonance peaks, which make an unambiguous identification of the vibrational modes difficult. Here, we probe the motion of graphene nanodrum resonators with spatial resolution using a phase-sensitive interferometer. By simultaneously visualizing the local phase and amplitude of the driven motion, we show that unexplained spectral features represent split degenerate modes. When taking these into account, the resonance frequencies up to the eighth vibrational mode agree with theory. The corresponding displacement profiles, however, are remarkably different from theory, as small imperfections increasingly deform the nodal lines for the higher modes. The Brownian motion, which is used to calibrate the local displacement, exhibits a similar mode pattern. The experiments clarify the complicated dynamic behavior of suspended two-dimensional materials, which is crucial for reproducible fabrication and applications.