Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pituitary ; 25(1): 1-51, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797529

RESUMO

Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.


Assuntos
Hormônio do Crescimento , Receptores da Somatotropina , Animais , Composição Corporal , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo
2.
Endocrinology ; 163(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952979

RESUMO

Growth hormone receptor knockout (GHRKO) mice have been used for 25 years to uncover some of the many actions of growth hormone (GH). Since they are extremely long-lived with enhanced insulin sensitivity and protected from multiple age-related diseases, they are often used to study healthy aging. To determine the effect that adipose tissue has on the GHRKO phenotype, our laboratory recently created and characterized adipocyte-specific GHRKO (AdGHRKO) mice, which have increased adiposity but appear healthy with enhanced insulin sensitivity. To test the hypothesis that removal of GH action in adipocytes might partially replicate the increased lifespan and healthspan observed in global GHRKO mice, we assessed adiposity, cytokines/adipokines, glucose homeostasis, frailty, and lifespan in aging AdGHRKO mice of both sexes. Our results show that disrupting the GH receptor gene in adipocytes improved insulin sensitivity at advanced age and increased lifespan in male AdGHRKO mice. AdGHRKO mice also exhibited increased fat mass, reduced circulating levels of insulin, c-peptide, adiponectin, resistin, and improved frailty scores with increased grip strength at advanced ages. Comparison of published mean lifespan data from GHRKO mice to that from AdGHRKO and muscle-specific GHRKO mice suggests that approximately 23% of lifespan extension in male GHRKO is due to GHR disruption in adipocytes vs approximately 19% in muscle. Females benefited less from GHR disruption in these 2 tissues with approximately 19% and approximately 0%, respectively. These data indicate that removal of GH's action, even in a single tissue, is sufficient for observable health benefits that promote long-term health, reduce frailty, and increase longevity.


Assuntos
Fragilidade , Resistência à Insulina , Adipócitos , Animais , Feminino , Hormônio do Crescimento , Resistência à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Longevidade/genética , Masculino , Camundongos , Camundongos Knockout , Receptores da Somatotropina/genética
3.
Endocrinology ; 160(7): 1743-1756, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31099824

RESUMO

In 1997, our laboratory used targeted gene disruption of the GH receptor (GHR) to generate GHR knockout (GHR-/-) mice, which have been used in >127 published studies to help elucidate GH's numerous activities. However, because GH replacement studies cannot be performed using this line, a GH knockout mouse line via targeted disruption of the GH gene is needed. Therefore, we created and characterized GH gene-disrupted (GH-/-) mice. GH-/- mice have severely decreased IGF-1 levels, small body size, and altered body composition with increased adiposity. GH-/- mice are extremely insulin sensitive but glucose intolerant, with a dramatic reduction in pancreatic islet size. Importantly, disruption of the GH gene had profound and depot-specific effects on white adipose tissue (WAT). Subcutaneous WAT from male and female GH-/- mice have significantly larger adipocytes and reduced fibrosis, neither of which occurred in perigonadal WAT, suggesting that GH has a more pronounced effect on subcutaneous WAT. Comparisons of GH-/- mice to previously published data on GHR-/- mice show a remarkably similar phenotype. Finally, we demonstrate that GH-/- mice are responsive to GH treatment, as shown by changes to serum IGF-1 levels; body length, weight, and composition; and insulin sensitivity. This study not only provides characterization of the first mouse line with targeted mutation of the GH gene but also indicates that GH gene disruption dramatically influences fibrosis of subcutaneous WAT.


Assuntos
Adipócitos/metabolismo , Hormônio do Crescimento/genética , Resistência à Insulina/fisiologia , Gordura Subcutânea/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Composição Corporal/fisiologia , Feminino , Fibrose/genética , Fibrose/metabolismo , Hormônio do Crescimento/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Knockout
4.
Endocrinology ; 160(1): 68-80, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462209

RESUMO

Global GH receptor-null or knockout (GHRKO) mice have been extensively studied owing to their unique phenotype (dwarf and obese but remarkably insulin sensitive and long-lived). To better understand the influence of adipose tissue (AT) on the GHRKO phenotype, we previously generated fat-specific GHRKO (FaGHRKO) mice using the adipocyte protein-2 (aP2) promoter driving Cre expression. Unlike global GHRKO mice, FaGHRKO mice are larger than control mice and have an increase in white AT (WAT) mass and adipocyte size as well as an increase in brown AT mass. FaGHRKO mice also have an unexpected increase in IGF-1, decrease in adiponectin, no change in insulin sensitivity or liver triglyceride content, and a decreased lifespan. Extensive analysis of the aP2 promoter/enhancer by multiple laboratories has revealed expression in nonadipose tissues, confounding interpretation of results. In the current study, we used the adiponectin promoter/enhancer to drive Cre expression, which better targets mature adipocytes, and generated a new line of adipocyte-specific GHRKO (AdGHRKO) mice. AdGHRKO mice have an increase in adipocyte size and WAT depot mass in all depots except male perigonadal, a WAT accumulation pattern similar to FaGHRKO mice. Likewise, adiponectin levels and WAT fibrosis are decreased in both tissue-specific mouse lines. However, unlike FaGHRKO mice, AdGHRKO mice have no change in IGF-1 levels, improved glucose homeostasis, and reduced liver triglycerides. Thus, AdGHRKO mice should be valuable for future studies assessing the contribution of adipocyte GHR signaling in long-term health and lifespan.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte/genética , Resistência à Insulina , Fígado/metabolismo , Triglicerídeos/metabolismo , Adiponectina , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteínas de Transporte/metabolismo , Feminino , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Knockout , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA