Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 18(6): e3000725, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516343

RESUMO

Inherited prion diseases are caused by autosomal dominant coding mutations in the human prion protein (PrP) gene (PRNP) and account for about 15% of human prion disease cases worldwide. The proposed mechanism is that the mutation predisposes to conformational change in the expressed protein, leading to the generation of disease-related multichain PrP assemblies that propagate by seeded protein misfolding. Despite considerable experimental support for this hypothesis, to-date spontaneous formation of disease-relevant, transmissible PrP assemblies in transgenic models expressing only mutant human PrP has not been demonstrated. Here, we report findings from transgenic mice that express human PrP 117V on a mouse PrP null background (117VV Tg30 mice), which model the PRNP A117V mutation causing inherited prion disease (IPD) including Gerstmann-Sträussler-Scheinker (GSS) disease phenotypes in humans. By studying brain samples from uninoculated groups of mice, we discovered that some mice (≥475 days old) spontaneously generated abnormal PrP assemblies, which after inoculation into further groups of 117VV Tg30 mice, produced a molecular and neuropathological phenotype congruent with that seen after transmission of brain isolates from IPD A117V patients to the same mice. To the best of our knowledge, the 117VV Tg30 mouse line is the first transgenic model expressing only mutant human PrP to show spontaneous generation of transmissible PrP assemblies that directly mirror those generated in an inherited prion disease in humans.


Assuntos
Amiloide/metabolismo , Príons/metabolismo , Adulto , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Códon/genética , Heterozigoto , Homozigoto , Humanos , Camundongos Transgênicos , Pessoa de Meia-Idade , Príons/isolamento & purificação
2.
Nature ; 522(7557): 478-81, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26061765

RESUMO

Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation.


Assuntos
Polimorfismo Genético/genética , Doenças Priônicas/genética , Doenças Priônicas/prevenção & controle , Príons/genética , Príons/metabolismo , Alelos , Substituição de Aminoácidos/genética , Animais , Bovinos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Encefalopatia Espongiforme Bovina/genética , Feminino , Heterozigoto , Homozigoto , Humanos , Kuru/epidemiologia , Kuru/genética , Kuru/prevenção & controle , Camundongos , Camundongos Transgênicos , Papua Nova Guiné/epidemiologia , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/epidemiologia , Doenças Priônicas/transmissão , Príons/química , Príons/farmacologia
3.
PLoS Pathog ; 11(7): e1004953, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26135918

RESUMO

Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.


Assuntos
Modelos Animais de Doenças , Doença de Gerstmann-Straussler-Scheinker/transmissão , Príons/química , Príons/genética , Animais , Doença de Gerstmann-Straussler-Scheinker/genética , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos
4.
PLoS Pathog ; 9(9): e1003643, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086135

RESUMO

Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.


Assuntos
Substituição de Aminoácidos , Encéfalo/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/transmissão , Mutação de Sentido Incorreto , Proteínas PrPSc/metabolismo , Príons/metabolismo , Animais , Encéfalo/patologia , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Proteínas Priônicas , Príons/genética
5.
Brain ; 135(Pt 3): 819-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22366797

RESUMO

Mutations in the charged multivesicular body protein 2B (CHMP2B) gene cause frontotemporal lobar degeneration. The mutations lead to C-terminal truncation of the CHMP2B protein. We generated Chmp2b knockout mice and transgenic mice expressing either wild-type or C-terminally truncated mutant CHMP2B. The transgenic CHMP2B mutant mice have decreased survival and show progressive neurodegenerative changes including gliosis and increasing accumulation of p62- and ubiquitin-positive inclusions. The inclusions are negative for the TAR DNA binding protein 43 and fused in sarcoma proteins, mimicking the inclusions observed in patients with CHMP2B mutation. Mice transgenic for mutant CHMP2B also develop an early and progressive axonopathy characterized by numerous amyloid precursor protein-positive axonal swellings, implicating altered axonal function in disease pathogenesis. These findings were not observed in Chmp2b knockout mice or in transgenic mice expressing wild-type CHMP2B, indicating that CHMP2B mutations induce degenerative changes through a gain of function mechanism. These data describe the first mouse model of dementia caused by CHMP2B mutation and provide new insights into the mechanisms of CHMP2B-induced neurodegeneration.


Assuntos
Axônios/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Corpos de Inclusão/patologia , Degeneração Neural/patologia , Neurônios/patologia , Envelhecimento/fisiologia , Animais , Western Blotting , Demência Frontotemporal/patologia , Gliose/patologia , Humanos , Imuno-Histoquímica , Íntrons/genética , Estimativa de Kaplan-Meier , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sobrevida
6.
J Gen Virol ; 90(Pt 3): 546-558, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19218199

RESUMO

Approximately 15 % of human prion disease is associated with autosomal-dominant pathogenic mutations in the prion protein (PrP) gene. Previous attempts to model these diseases in mice have expressed human PrP mutations in murine PrP, but this may have different structural consequences. Here, we describe transgenic mice expressing human PrP with P102L or E200K mutations and methionine (M) at the polymorphic residue 129. Although no spontaneous disease developed in aged animals, these mice were readily susceptible to prion infection from patients with the homotypic pathogenic mutation. However, while variant Creutzfeldt-Jakob disease (CJD) prions transmitted infection efficiently to both lines of mice, markedly different susceptibilities to classical (sporadic and iatrogenic) CJD prions were observed. Prions from E200K and classical CJD M129 homozygous patients, transmitted disease with equivalent efficiencies and short incubation periods in human PrP 200K, 129M transgenic mice. However, mismatch at residue 129 between inoculum and host dramatically increased the incubation period. In human PrP 102L, 129M transgenic mice, short disease incubation periods were only observed with transmissions of prions from P102L patients, whereas classical CJD prions showed prolonged and variable incubation periods irrespective of the codon 129 genotype. Analysis of disease-related PrP (PrP(Sc)) showed marked alteration in the PrP(Sc) glycoform ratio propagated after transmission of classical CJD prions, consistent with the PrP point mutations directly influencing PrP(Sc) assembly. These data indicate that P102L or E200K mutations of human PrP have differing effects on prion propagation that depend upon prion strain type and can be significantly influenced by mismatch at the polymorphic residue 129.


Assuntos
Síndrome de Creutzfeldt-Jakob/transmissão , Mutação Puntual , Doenças Priônicas/transmissão , Príons/patogenicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Suscetibilidade a Doenças , Humanos , Camundongos , Camundongos Transgênicos , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/genética , Príons/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA