Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 28(10): 1303-6, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22451271

RESUMO

MOTIVATION: The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. RESULTS: The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Substituição de Aminoácidos , DNA de Plantas , Bases de Dados de Proteínas , Fosforilação , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteômica , Análise de Sequência de DNA
2.
Artigo em Inglês | MEDLINE | ID: mdl-25883932

RESUMO

Over the past 10 years, the bioenergy field has realized significant achievements that have encouraged many follow on efforts centered on biosynthetic production of fuel-like compounds. Key to the success of these efforts has been transformational developments in feedstock characterization and metabolic engineering of biofuel-producing microbes. Lagging far behind these advancements are analytical methods to characterize and quantify systems of interest to the bioenergy field. In particular, the utilization of proteomics, while valuable for identifying novel enzymes and diagnosing problems associated with biofuel-producing microbes, is limited by a lack of robustness and limited throughput. Nano-flow liquid chromatography coupled to high-mass accuracy, high-resolution mass spectrometers has become the dominant approach for the analysis of complex proteomic samples, yet such assays still require dedicated experts for data acquisition, analysis, and instrument upkeep. The recent adoption of standard flow chromatography (ca. 0.5 mL/min) for targeted proteomics has highlighted the robust nature and increased throughput of this approach for sample analysis. Consequently, we assessed the applicability of standard flow liquid chromatography for shotgun proteomics using samples from Escherichia coli and Arabidopsis thaliana, organisms commonly used as model systems for lignocellulosic biofuels research. Employing 120 min gradients with standard flow chromatography, we were able to routinely identify nearly 800 proteins from E. coli samples; while for samples from Arabidopsis, over 1,000 proteins could be reliably identified. An examination of identified peptides indicated that the method was suitable for reproducible applications in shotgun proteomics. Standard flow liquid chromatography for shotgun proteomics provides a robust approach for the analysis of complex samples. To the best of our knowledge, this study represents the first attempt to validate the standard flow approach for shotgun proteomics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA