RESUMO
AIMS/HYPOTHESIS: Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonism, used in the treatment of type 2 diabetes, has recently been shown to increase thermogenesis via the brain. As brown adipose tissue (BAT) produces heat by burning triacylglycerol (TG) and takes up glucose for de novo lipogenesis, the aim of this study was to evaluate the potential of chronic central GLP-1R activation by exendin-4 to facilitate clearance of lipids and glucose from the circulation by activating BAT. METHODS: Lean and diet-induced obese (DIO) C57Bl/6J mice were used to explore the effect of a 5 day intracerebroventricular infusion of the GLP-1 analogue exendin-4 or vehicle on lipid and glucose uptake by BAT in both insulin-sensitive and insulin-resistant conditions. RESULTS: Central administration of exendin-4 in lean mice increased sympathetic outflow towards BAT and white adipose tissue (WAT), resulting in increased thermogenesis as evidenced by increased uncoupling protein 1 (UCP-1) protein levels and decreased lipid content, while the uptake of TG-derived fatty acids was increased in both BAT and WAT. Interestingly, in DIO mice, the effects on WAT were blunted, while exendin-4 still increased sympathetic outflow towards BAT and increased the uptake of plasma TG-derived fatty acids and glucose by BAT. These effects were accompanied by increased fat oxidation, lower plasma TG and glucose concentrations, and reduced body weight. CONCLUSIONS/INTERPRETATION: Collectively, our results suggest that BAT activation may be a major contributor to the glucose- and TG-lowering effects of GLP-1R agonism.
Assuntos
Tecido Adiposo Marrom/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/metabolismo , Transdução de Sinais/fisiologia , Triglicerídeos/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Incretinas/farmacologia , Insulina/metabolismo , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1 , Peçonhas/farmacologiaRESUMO
Prostate cancer (PC) is dependent on androgen receptor (AR) activation by testosterone and 5α-dihydrotestosterone (DHT). Intratumoral androgen accumulation and activation despite systemic androgen deprivation therapy underlies the development of castration-resistant PC (CRPC), but the precise pathways involved remain controversial. Here we investigated the differential contributions of de novo androgen biosynthesis and androgen precursor conversion to androgen accumulation. Steroid flux analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on (CR)PC cell lines and fresh patient PC tissue slices after incubation with classic and alternative biosynthesis intermediates, alongside quantitative PCR analysis for steroidogenic enzyme expression. Activity of CYP17A1 was undetectable in all PC cell lines and patient PC tissue slices. Instead, steroid flux analysis confirmed the generation of testosterone and DHT from adrenal precursors and reactivation of androgen metabolites. Precursor steroids upstream of DHEA were converted down the first steps of the alternative DHT biosynthesis pathway, but did not proceed through to active androgen generation. Comprehensive steroid flux analysis of (CR)PC cells provides strong evidence against intratumoral de novo androgen biosynthesis and demonstrates that androgen precursor steroids downstream of CYP17A1 activities constitute the major source of intracrine androgen generation.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Androgênios/metabolismo , Antagonistas de Androgênios , Cromatografia Líquida , Espectrometria de Massas em Tandem , Testosterona/metabolismo , Di-Hidrotestosterona/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Esteroides/metabolismo , Linhagem Celular Tumoral , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismoRESUMO
CONTEXT: Genetic variation in sex hormone-binding globulin (SHBG) structure may affect estimates of sex steroid exposure by altering the affinity of the protein for its ligand. Consequently, free hormone calculations assuming constant binding affinity may, for certain genetic variations, lead to incorrect diagnoses if genetic variation is not taken into consideration. OBJECTIVE: To investigate the effects of genetic variation in SHBG on calculated and measured serum free testosterone (T) in men. DESIGN, SETTING AND PARTICIPANTS: Population-based sibling-pair study in 999 healthy men aged 25 to 45 (mean: 34.5) years. MAIN OUTCOME MEASURES: Genotyping using microarray (Illumina®) for SNPs suggested to affect binding affinity and/or concentration of SHBG or T. SHBG concentrations were measured using immunoassay and in a subset (n = 32) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Total T was measured using LC-MS/MS. Free T was calculated and in a subset (n = 314) measured directly using LC-MS/MS after equilibrium dialysis. RESULTS: Allelic frequencies of analyzed SNPs ranged from 0.5% to 58.2%. Compared to wild-type, SHBG concentrations were lower in rs6258 heterozygotes (-24.7%; p < 0.05) and higher in rs6259 heterozygotes, rs727428 homozygotes, and carriers of rs1799941 (+10.8 to 23.1%; all p < 0.05). Total T was higher in rs727428 homozygotes and carriers of rs5934505, rs1799941and rs6259 (+3.9 to 21.4%; all p < 0.05). No clear effects on measured free T were found, except for a trend towards higher values in rs6259 homozygotes, significant for calculated free T (+18.7%; p < 0.05) in the larger global study population. CONCLUSION: In these men, analyzed SNPs were relatively prevalent and affected serum concentrations of total T and SHBG but not calculated or measured free T except for a higher trend in rs6259 homozygotes.
RESUMO
11-oxygenated androgens are a class of steroids capable of activating the androgen receptor (AR) at physiologically relevant concentrations. In view of the AR as a key driver of prostate cancer (PC), these steroids are potential drivers of disease and progression. The 11-oxygenated androgens are adrenal-derived, and persist after androgen deprivation therapy (ADT), the mainstay treatment for advanced PC. Consequently, these steroids are of particular interest in the castration-resistant prostate cancer (CRPC) setting. The principal androgen of the pathway, 11-ketotestosterone (11KT), is a potent AR agonist and the predominant circulating active androgen in CRPC patients. Additionally, several precursor steroids are present in the circulation which can be converted into active androgens by steroidogenic enzymes present in PC cells. In vitro evidence suggests that adaptations frequently observed in CRPC favour the intratumoral accumulation of 11-oxygenated androgens in particular. Still, apparent gaps in our understanding of the physiology and role of the 11-oxygenated androgens remain. In particular, in vivo and clinical evidence supporting these in vitro findings is limited. Despite recent advances, a comprehensive assessment of intratumoral concentrations has not yet been performed. The exact contribution of the 11-oxygenated androgens to CRPC progression therefore remains unclear. This review will focus on the current evidence linking the 11-oxygenated androgens to PC, will highlight current gaps in our knowledge, and will provide insight into the potential clinical importance of the 11-oxygenated androgens in the CRPC setting based on the current evidence.
RESUMO
BACKGROUND: Androgen receptor (AR) ligand-binding domain (LBD) mutations occur in ~20% of all castration-resistant prostate cancer (CRPC) patients. These mutations confer ligand promiscuity, but the affinity for many steroid hormone pathway intermediates is unknown. In this study, we investigated the stimulation of clinically relevant AR-LBD mutants by endogenous and exogenous steroid hormones present in CRPC patients to unravel their potential contribution to AR pathway reactivation. METHODS: A meta-analysis of studies reporting untargeted analysis of AR mutants was performed to identify clinically relevant AR-LBD mutations. Using luciferase reporter and quantitative fluorescent microscopy, these AR mutants were screened for sensitivity for various endogenous steroids and synthetic glucocorticoids used in the treatment of CRPC. RESULTS: The meta-analysis revealed that ARL702H (3.4%), ARH875Y (4.9%), and ART878A (4.4%) were the most prevalent AR-LBD mutations across 1614 CRPC patients from 21 unique studies. Testosterone (EC50: 0.22 nmol/L) and 11-ketotestosterone (11KT, EC50: 0.74 nmol/L) displayed subnanomolar affinity for ARWT. The p.H875Y mutation selectively increased sensitivity of the AR for 11KT (EC50: 0.15 nmol/L, p < 0.05 vs ARWT), whereas p.L702H decreased sensitivity for 11KT by almost 50-fold. While cortisol and prednisolone both stimulate ARL702H, dexamethasone importantly does not. CONCLUSION: Both testosterone and 11KT effectively contribute to ARWT activation, while selective sensitization positions 11KT as a more prominent activator of ARH875Y. Dexamethasone may be a suitable alternative to prednisolone and should be explored in patients bearing the ARL702H.
Assuntos
Androgênios , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Androgênios/genética , Androgênios/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Glucocorticoides/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Ligantes , Testosterona/metabolismo , Esteroides/metabolismo , Mutação , Prednisolona/farmacologia , Dexametasona/farmacologiaRESUMO
BACKGROUND: Steroid hormones are essential signalling molecules in prostate cancer (PC). However, many studies focusing on liquid biomarkers fail to take the hormonal status of these patients into account. Steroid measurements are sensitive to bias caused by matrix effects, thus assessing potential matrix effects is an important step in combining circulating tumour DNA (ctDNA) analysis with hormone status. METHODS: We investigated the accuracy of multi-steroid hormone profiling in mechanically-separated plasma (MSP) samples and in plasma from CellSave Preservative (CS) tubes, that are typically used to obtain ctDNA, compared to measurements in serum. We performed multiplex steroid profiling by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in samples obtained from ten healthy controls and ten castration-resistant prostate cancer (CRPC) patients. RESULTS: Steroid measurements were comparable between MSP and serum. A small but consistent decrease of 8-21% compared to serum was observed when using CS plasma, which was considered to be within the acceptable margin. The minimal residual testosterone levels of CRPC patients could be sensitively quantified in both MSP and CS samples. CONCLUSIONS: We validated the use of MSP and CS samples for multi-steroid profiling by LC-MS/MS. The optimised use of these samples in clinical trials will allow us to gain further insight into the steroid metabolism in PC patients.
Assuntos
Esteroides , Cromatografia Líquida , Espectrometria de Massas em TandemRESUMO
BACKGROUNDContinued androgen receptor (AR) signaling constitutes a key target for treatment in metastatic castration-resistant prostate cancer (CRPC). Studies have identified 11-ketotestosterone (11KT) as a potent AR agonist, but it is unknown if 11KT is present at physiologically relevant concentrations in patients with CRPC to drive AR activation. The goal of this study was to investigate the circulating steroid metabolome including all active androgens in patients with CRPC.METHODSPatients with metastatic CRPC (n = 29) starting a new line of systemic therapy were included. Sequential plasma samples were obtained for measurement of circulating steroid concentrations by multisteroid profiling employing liquid chromatography-tandem mass spectrometry. Metastatic tumor biopsy samples were obtained at baseline and subjected to RNA sequencing.RESULTS11KT was the most abundant circulating active androgen in 97% of patients with CRPC (median 0.39 nmol/L, range: 0.03-2.39 nmol/L), constituting 60% (IQR 43%-79%) of the total active androgen (TA) pool. Treatment with glucocorticoids reduced 11KT by 84% (49%-89%) and testosterone by 68% (38%-79%). Circulating TA concentrations at baseline were associated with a distinct intratumor gene expression signature comprising AR-regulated genes.CONCLUSIONThe potent AR agonist 11KT is the predominant circulating active androgen in patients with CRPC and, therefore, one of the potential drivers of AR activation in CRPC. Assessment of androgen status should be extended to include 11KT, as current clinical approaches likely underestimate androgen abundance in patients with CRPC.TRIAL REGISTRATIONNetherlands Trial Register: NL5625 (NTR5732).FUNDINGDaniel den Hoed Foundation and Wellcome Trust (Investigator Award WT209492/Z/17/Z).
Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Androgênios/sangue , Glucocorticoides/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/sangue , Testosterona/análogos & derivados , Testosterona/sangue , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Orquiectomia , Prostatectomia , Neoplasias de Próstata Resistentes à Castração/terapia , Radioisótopos/uso terapêutico , Receptores Androgênicos , TranscriptomaRESUMO
Steroid hormones play a central role in the maintenance and progression of prostate cancer. The androgen receptor is the primary driver of tumor cell proliferation and is activated by the androgens testosterone and 5α-dihydrotestosterone. Inhibition of this pathway through medical or surgical castration improves survival in the majority of advanced prostate cancer patients. However, conversion of adrenal androgen precursors and alternative steroidogenic pathways have been found to contribute to tumor progression and resistance to treatment. The emergence of highly accurate detection methods allows us to study steroidogenic mechanisms in more detail, even after treatment with potent steroidogenic inhibitors such as the CYP17A1 inhibitor abiraterone. A clear overview of steroid hormone levels in patients throughout the local, metastatic and castration-resistant stages of prostate cancer and treatment modalities is key toward a better understanding of their role in tumor progression and treatment resistance. In this review, we summarize the currently available data on steroid hormones that have been implicated in the various stages of prostate cancer. Additionally, this review addresses the implications of these findings, highlights important studies in this field and identifies current gaps in literature.