RESUMO
Introduction: A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or 'receptive' endometrium. Decidualization of uterine endometrial stromal fibroblast cells (hESF) is critical for the establishment of a healthy pregnancy. microRNAs (miRs) are critical regulators of cellular function that can be released by a donor cell to influence the physiological state of recipient cells. We aimed to determine how decidualization affects hESF miR release and investigated the function of one decidualization regulated miR, miR-19b-3p, previously shown to be associated with recurrent pregnancy loss. Method: miR release by hESF was determined by miR microarray on culture media from hESF decidualized in vitro for 3 and 14 days by treatment with oestradiol and medroxyprogesterone acetate. Cellular and whole endometrial/decidual tissue miR expression was quantified by qPCR and localized by in situ hybridization. The function of miR-19b-3p in HTR8/Svneo trophoblast cells was investigated using real time cell analysis (xCELLigence) and gene expression qPCR. Results: From our miR screen we found that essentially all hESF miR release was reduced following in vitro decidualization, significantly so for miR-17-5p, miR-21-3p, miR-34c-3p, miR-106b-5p, miR-138-5p, miR-296-5p, miR-323a-3p, miR-342-3p, miR-491-5p, miR-503-5p and miR-542-5p. qPCR demonstrated that miR-19b-3p, 181a-2-3p and miR-409-5p likewise showed a significant reduction in culture media following decidualization but no change was found in cellular miR expression following decidualization. In situ hybridization localized miR-19b-3p to epithelial and stromal cells in the endometrium and qPCR identified that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss compared to normally fertile controls. Functionally, overexpression of miR-19b-3p significantly reduced HTR8/Svneo trophoblast proliferation and increased HOXA9 expression. Discussion: Our data demonstrates that decidualization represses miR release by hESFs and overexpression of miR-19b-3p was found in endometrial tissue from patients with a history of early pregnancy loss. miR-19b-3p impaired HTR8/Svneo proliferation implying a role in trophoblast function. Overall we speculate that miR release by hESF may regulate other cell types within the decidua and that appropriate release of miRs by decidualized hESF is essential for healthy implantation and placentation.
Assuntos
Aborto Espontâneo , MicroRNAs , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Aborto Espontâneo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Estromais/metabolismo , Meios de Cultura/metabolismoRESUMO
Poor pregnancy outcomes such as recurrent pregnancy loss (RPL) and preeclampsia are associated with impaired decidualization and abnormal trophoblast invasion. Emerging evidence suggests that use of corticosteroids, including prednisolone affects fertility by altering uterine function and may be associated with preeclampsia incidence. In this study, using primary and gestational-age appropriate tissue, we aimed to define the effect of prednisolone on human endometrial stromal fibroblast (hESF) decidualization and determine whether hESF decidualization in the presence of prednisolone would alter hESF regulation of trophoblast function. We found that prednisolone treatment reduced hESF cytokine expression (IL6, IL11, IL18, LIF, and LIFR) but had no effect on hESF expression or secretion of the classic markers of decidualization [prolactin (PRL) and IGFBP1]. Using proteomics we determined that prednisolone altered decidualized hESF protein production, enriching hESF proteins associated with acetylation and mitrochondria. Conditioned media from hESF decidualized in the presence of prednisolone significantly enhanced trophoblast outgrowth and trophoblast mRNA expression of cell motility gene PLCG1 and reduced trophoblast production of PGF. Prednisolone treatment during the menstrual cycle and 1st trimester of pregnancy might alter decidual interactions with other cells, including invasive trophoblast.
RESUMO
Preeclampsia is a serious pregnancy-induced disorder unique to humans. The etiology of preeclampsia is poorly understood; however, poor placental formation is thought causal. Galectin-7 is produced by trophoblast and is elevated in first-trimester serum of women who subsequently develop preeclampsia. We hypothesized that elevated placental galectin-7 may be causative of preeclampsia. Here, we demonstrated increased galectin-7 production in chorionic villous samples from women who subsequently develop preterm preeclampsia compared with uncomplicated pregnancies. In vitro, galectin-7 impaired human first-trimester trophoblast outgrowth, increased placental production of the antiangiogenic sFlt-1 splice variant, sFlt-1-e15a, and reduced placental production and secretion of ADAM12 (a disintegrin and metalloproteinase12) and angiotensinogen. In vivo, galectin-7 administration (E8-E12) to pregnant mice caused elevated systolic blood pressure, albuminuria, impaired placentation (reduced labyrinth vascular branching, impaired decidual spiral artery remodeling, and a proinflammatory placental state demonstrated by elevated IL1ß, IL6 and reduced IL10), and dysregulated expression of renin-angiotensin system components in the placenta, decidua, and kidney, including angiotensinogen, prorenin, and the angiotensin II type 1 receptor. Collectively, this study demonstrates that elevated galectin-7 during placental formation contributes to abnormal placentation and suggests that it leads to the development of preeclampsia via altering placental production of sFlt-1 and renin-angiotensin system components. Targeting galectin-7 may be a new treatment option for preeclampsia.