Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Altern Lab Anim ; 52(2): 107-116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351650

RESUMO

In vitro models of the dental pulp microenvironment have been proposed for the assessment of biomaterials, to minimise animal use in operative dentistry. In this study, a scaffold/3-D dental pulp cell culture interface was created in a microchip, under simulated dental pulp pressure, to evaluate the cell-homing potential of a chitosan (CH) scaffold functionalised with calcium aluminate (the 'CHAlCa scaffold'). This microphysiological platform was cultured at a pressure of 15 cm H2O for up to 14 days; cell viability, migration and odontoblastic differentiation were then assessed. The CHAlCa scaffold exhibited intense chemotactic potential, causing cells to migrate from the 3-D culture to its surface, followed by infiltration into the macroporous structure of the scaffold. By contrast, the cells in the presence of the non-functionalised chitosan scaffold showed low cell migration and no cell infiltration. CHAlCa scaffold bioactivity was confirmed in dentin sialophosphoprotein-positive migrating cells, and odontoblastic markers were upregulated in 3-D culture. Finally, in situ mineralised matrix deposition by the cells was confirmed in an Alizarin Red-based assay, in which the CHAlCa and CH scaffolds were adapted to fit within dentin discs. More intense deposition of matrix was observed with the CHAlCa scaffold, as compared to the CH scaffold. In summary, we present an in vitro platform that provides a simple and reproducible model for selecting and developing innovative biomaterials through the assessment of their cell-homing potential. By using this platform, it was shown that the combination of calcium aluminate and chitosan has potential as an inductive biomaterial that can mediate dentin tissue regeneration during cell-homing therapies.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Quitosana , Animais , Alicerces Teciduais/química , Polpa Dentária , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Engenharia Tecidual
2.
Int Endod J ; 55(12): 1359-1371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36036876

RESUMO

AIM: Guided tissue regeneration has been considered a promising strategy to replace conventional endodontic therapy of teeth with incomplete root formation. Therefore, the objective of this study was to develop a tubular scaffold (TB-SC) with poly (caprolactone)-aligned nanofibres associated with a fibronectin (FN)-loaded collagen hydrogel and assess the pulp regeneration potential mediated by human apical papilla cells (hAPCs) using an in vitro model of teeth with incomplete root formation. METHODOLOGY: Aligned nanofibre strips based on 10% poly(caprolactone) (PCL) were synthesized with the electrospinning technique to produce the TB-SCs. These were submitted to different treatments, according to the following groups: TB-SC (negative control): TB-SC without treatment; TB-SC + FN (positive control): TB-SC coated with 10 µg/ml of FN; TB-SC + H: TB-SC associated with collagen hydrogel; TB-SC + HFN: TB-SC associated with FN-loaded collagen hydrogel. Then, the biomaterials were inserted into cylindrical devices to mimic the regenerative therapy of teeth with incomplete root formation. The hAPCs were seeded on the upper surface of the TB-SCs associated or not with any treatment, and cell migration/proliferation and the gene expression of markers related to pulp regeneration (ITGA5, ITGAV, COL1A1 and COL1A3) were evaluated. The data were submitted to anova/Tukey's tests (α = 5%). RESULTS: Higher values of cell migration/proliferation and gene expression of all markers tested were observed in groups TB-SC + FN, TB-SC + H, and TB-SC + HFN compared with the TB-SC group (p < .05). The hAPCs in the TB-SC + HFN group showed the highest values of cell proliferation and gene expression of COL1A1 and COL3A1 (p < .05), as well as superior cell migration results to groups TB-SC and TB-SC + H (p < .05). CONCLUSION: Aligned nanofibre scaffolds associated with the FN-loaded collagen hydrogel enhanced the migration and proliferation of hAPCs and gene expression of pulp regeneration markers. Therefore, the use of these biomaterials may be considered an interesting strategy for regenerative pulp therapy of teeth with incomplete root formation.


Assuntos
Nanofibras , Endodontia Regenerativa , Humanos , Nanofibras/uso terapêutico , Hidrogéis , Alicerces Teciduais , Polpa Dentária , Fibronectinas , Regeneração , Colágeno , Materiais Biocompatíveis , Engenharia Tecidual/métodos
3.
Clin Oral Investig ; 26(5): 4099-4108, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35199193

RESUMO

OBJECTIVES: Evaluate in vitro the esthetic efficacy and cytotoxicity of a bleaching gel containing 35% hydrogen peroxide (BG-35%H2O2), applied for different time intervals, on enamel coated or not with polymeric biomaterials. MATERIALS AND METHODS: Nanofiber scaffolds (NSc) and a primer catalyst (PrCa) were used to coat the bovine enamel/dentin discs before the application of BG-35%H2O2, according to the following groups: G1-negative control (NC, without treatment); G2, G3, and G4-BG-35%H2O2 applied for 3 × 15, 2 × 15, and 15 min; G5, G6, and G7-BG-35%H2O2 applied on enamel coated with NSc and PrCa for 3 × 15; 2 × 15, and 15 min, respectively. The culture medium with components of gel diffused through the discs was applied on MDPC-23 cells, which were evaluated regarding to viability (VB), integrity of the membrane (IM), and oxidative stress (OxS). The quantity of H2O2 diffused and esthetic efficacy (ΔE/ΔWI) of the dental tissues were also analyzed (ANOVA/Tukey; p < 0.05). RESULTS: Only G7 was similar to G1 regarding VB (p > 0.05). The lowest value of H2O2 diffusion occurred in G4 and G7, where the cells exhibited the lowest OxS than G2 (p < 0.05). Despite G5 showing the greatest ΔE regarding other groups (p < 0.05), the esthetic efficacy observed in G7 was similar to G2 (p > 0.05). ΔWI indicated a greater bleaching effect for groups G5, G6, and G7 (p < 0.05). CONCLUSION: Coating the dental enamel with polymeric biomaterials reduced the time and the cytotoxicity of BG-35%H2O2. CLINICAL SIGNIFICANCE: Coating the dental enamel with polymeric biomaterials allows safer and faster BG-35%H2O2 application.


Assuntos
Clareadores Dentários , Clareamento Dental , Animais , Materiais Biocompatíveis , Bovinos , Esmalte Dentário , Estética Dentária , Peróxido de Hidrogênio , Ácido Hipocloroso , Clareadores Dentários/toxicidade
4.
Clin Oral Investig ; 26(12): 7277-7286, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35974255

RESUMO

OBJECTIVE: The study aims to assess the effects of a 10% H2O2 bleaching gel with different MnO2 concentrations on the bleaching efficacy (BE), degradation kinetics (DK) of H2O2, and trans-amelodentinal cytotoxicity (TC). MATERIALS AND METHODS: Standardized bovine enamel/dentin disks (n = 96) were placed in artificial pulp chambers, and the bleaching gels were applied for 45 min. Thus, the following groups were established: (G1) no treatment (negative control/NC); (G2) 35% H2O2 (positive control/PC); (G3) 10% H2O2; (G4) 10% H2O2 + 2 mg/mL MnO2; (G5) 10% H2O2 + 6 mg/mL MnO2; and (G6) 10% H2O2 + 10 mg/mL MnO2. After analyzing bleaching efficacy (ΔE00 and ΔWI), the degradation kinetics of H2O2 and trans-amelodentinal cytotoxicity were determined (n = 8, ANOVA/Tukey; p < 0.05). RESULTS: G6 presented BE (ΔE00 and ΔWI) statistically similar to G2, which represented conventional in-office bleaching (p = 0.6795; p > 0.9999). A significant reduction in the diffusion of H2O2 occurred in G3, G4, G5, and G6 compared to G2 (p < 0.0001). The highest DK of H2O2 occurred in G6 (p < 0.0001), which had the lowest TC in comparison with all other bleached groups (p ≤ 0.0186). CONCLUSION: The addition of 10 mg/mL of MnO2 in a 10% H2O2 bleaching gel potentiates the degradation of this reactive molecule, which increases the BE of the product and decreases TC. CLINICAL SIGNIFICANCE: Replacing a 35% H2O2 gel commonly used for conventional in-office dental bleaching by a 10% H2O2 gel containing 10 mg/mL of MnO2 reduces the cytotoxicity of this professional therapy, maintaining its excellent esthetic efficacy.


Assuntos
Clareadores Dentários , Clareamento Dental , Bovinos , Animais , Peróxido de Hidrogênio , Clareadores Dentários/toxicidade , Compostos de Manganês , Óxidos/toxicidade , Estética Dentária , Géis
5.
J Prosthet Dent ; 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35864023

RESUMO

STATEMENT OF PROBLEM: Three-dimensionally (3D) printed resins have become popular as a new class of materials for making interim restorations. However, little is known about how the fabrication parameters can influence biological compatibility with oral tissues. PURPOSE: The purpose of this in vitro study was to evaluate the effect of the postpolymerization time on the cytotoxicity of resins for printing interim restorations by using a 3D organotypic model of the oral mucosa. MATERIAL AND METHODS: Cylindrical specimens were prepared with conventional acrylic resin (AR), computer-aided design and computer-aided manufacture (CAD-CAM) resin (CC), composite resin (CR), and 2 resins for 3D printing (3DP) marketed as being biocompatible. The 3DPs were submitted to postpolymerization in an ultraviolet (UV) light chamber for 1, 10, or 20 minutes (90 W, 405 nm). Standard specimens of the materials were incubated for 1, 3, and 7 days in close contact with an organotypic model of keratinocytes (NOK-Si) in coculture with gingival fibroblasts (HGF) in a 3D collagen matrix, or directly with 3D HGF cultures. Then, the viability (Live/Dead n=2) and metabolism (Alamar Blue n=6) of the cells were assessed. Spectral scanning of the culture medium was performed to detect released components (n=6) and assessed statistically with ANOVA and the Tukey post hoc test (α=.05). RESULTS: Severe reduction of metabolism (>70%) and viability of keratinocytes occurred for 3DP resin postpolymerized for 1 minute in all periods of analysis in a time-dependent manner. The decrease in cell metabolism and viability was moderate for the 3D culture of HGFs in both experimental models, correlated with the intense presence of resin components in the culture medium. The resins postpolymerized for 10 and 20 minutes promoted a mild-moderate cytotoxic effect in the period of 1 day, similar to AR. However, recovery of cell viability occurred at the 7-day incubation period. The 3DP resins submitted to postpolymerization for 20 minutes showed a pattern similar to that of CR and CC at the end of the experiment. CONCLUSIONS: The cytotoxic potential of the tested 3DP resins on oral mucosa cells was influenced by postprinting processing, which seemed to have been related with the quantity of residual components leached.

6.
J Esthet Restor Dent ; 33(8): 1139-1149, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251089

RESUMO

Evaluate the kinetics of hydrogen peroxide (H2 O2 ) degradation, esthetic efficacy and cytotoxicity of a bleaching gel with 35%H2 O2 applied on enamel previously covered or not with polymeric nanofibrillar scaffold (SNan), polymeric primer catalyst (PPol), and both. Standardized enamel/dentin discs (n = 128) obtained from bovine teeth were adapted to pulp chambers. After covering enamel with the polymeric products, the bleaching gel was applied for 45 min, establishing the following groups: G1: no treatment (negative control); G2: 35%H2 O2 (positive control); G3: SNan; G4: PPol; G5: SNan + PPol; G6: SNan + 35%H2 O2 ; G7: PPol + 35%H2 O2 ; G8: SNan + PPol + 35%H2 O2 . The kinetics of H2 O2 degradation (n = 8), bleaching efficacy (ΔE/ΔWI; n = 8), trans-amelodentinal cytotoxicity (n = 8), and cell morphology (n = 4) were assessed (ANOVA/Tukey test; p < 0.05). Greater H2 O2 degradation occurred in G7 and G8. Bleaching efficacy (ΔE) was higher in G6, G7, and G8 in comparison with G2 (p < 0.05). However, no difference was observed for ΔWI (p > 0.05). G8 presented the lower level of trans-amelodentinal diffusion of H2 O2 , oxidative stress, and toxicity to the MDPC-23 cells (p < 0.05). Polymeric biomaterials increased the kinetics of H2 O2 decomposition, as well as maintained the esthetic efficacy and minimized the cytotoxicity caused by a bleaching gel with 35%H2 O2 . CLINICAL SIGNIFICANCE: Application of a bleaching gel with 35%H2 O2 on enamel previously covered by polymeric biomaterials maintains the esthetic efficacy and reduces the cytotoxicity caused by a single session of in-office dental bleaching.


Assuntos
Clareadores Dentários , Clareamento Dental , Animais , Materiais Biocompatíveis , Bovinos , Esmalte Dentário , Estética Dentária , Peróxido de Hidrogênio
7.
Clin Oral Investig ; 24(5): 1739-1748, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31372829

RESUMO

OBJECTIVES: This study assessed the human pulp response after adhesive restoration of cavities by indirect pulp capping with a conventional or a resin-modified glass ionomer cement. MATERIALS AND METHODS: Deep cavities prepared in 26 human premolars were lined with Riva Light Cure (Riva LC), Riva Self Cure (Riva SC), or Dycal, and then restored with composite resin. Four teeth were used as intact control. After time intervals of 7 or 30 days, the teeth were extracted, processed for histological evaluation of the pulp, and the remaining dentin thickness (RDT) between the cavity floor and the pulp was measured. RESULTS: At 7 days, a slight pulp inflammation associated with discrete tissue disorganization was observed in most of t the teeth lined with Riva LC and Riva SC. Moderate pulp inflammation occurred in one tooth lined with Riva LC. Bacteria were identified in one specimen of the same group that exhibited no pulp damage. At 30 days, slight pulp inflammation and discrete tissue disorganization persisted in two specimens treated with Riva LC, in which a thin layer of tertiary dentin was deposited. Mean RDTs ranged from 383.0 to 447.8 µm. CONCLUSIONS: Riva LC produced more damage to the pulp than Riva SC. However, the initial pulp damage decreased over time and after 30 days both GICs were labeled as biocompatible. CLINICAL RELEVANCE: In this study conducted with human teeth, the conventional and the resin-modified glass ionomer cements investigated were shown not to cause post-operative sensitivity or persistent pulp damage when applied as liners in very deep cavities, thereby indicating their biocompatibility.


Assuntos
Cárie Dentária/terapia , Polpa Dentária/efeitos dos fármacos , Restauração Dentária Permanente , Dentina Secundária , Cimentos de Ionômeros de Vidro , Hidróxido de Cálcio , Resinas Compostas , Dentina , Humanos , Inflamação , Minerais , Cimentos de Resina
8.
Clin Oral Investig ; 24(2): 663-674, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31119382

RESUMO

OBJECTIVES: This study aimed to develop a porous chitosan-calcium-aluminate scaffold (CH-AlCa) in combination with a bioactive dosage of 1α,25-dihydroxyvitamin D3 (1α,25VD), to be used as a bioactive substrate capable to increase the odontogenic potential of human dental pulp cells (HDPCs). MATERIALS AND METHODS: The porous CH-AlCa was developed by the incorporation of an AlCa suspension into a CH solution under vigorous agitation, followed by phase separation at low temperature. Scaffold architecture, porosity, and calcium release were evaluated. Thereafter, the synergistic potential of CH-AlCa and 1 nM 1α,25VD, selected by a dose-response assay, for HDPCs seeded onto the materials was assessed. RESULTS: The CH-AlCa featured an organized and interconnected pore network, with increased porosity in comparison with that of plain chitosan scaffolds (CH). Increased odontoblastic phenotype expression on the human dental pulp cell (HDPC)/CH and HDPC/CH-AlCa constructs in the presence of 1 nM 1α,25VD was detected, since alkaline phosphatase activity, mineralized matrix deposition, dentin sialophosphoprotein/dentin matrix acidic phosphoprotein 1 mRNA expression, and cell migration were overstimulated. This drug featured a synergistic effect with CH-AlCa, since the highest values of cell migration and odontoblastic markers expression were observed in this experimental condition. CONCLUSIONS: The experimental CH-AlCa scaffold increases the chemotaxis and regenerative potential of HDPCs, and the addition of low-dosage 1α,25VD to this scaffold enhances the potential of these cells to express an odontoblastic phenotype. CLINICAL RELEVANCE: Chitosan scaffolds enriched with calcium-aluminate in association with low dosages of 1α,25-dihydroxyvitamin D3 provide a highly bioactive microenvironment for dental pulp cells prone to dentin regeneration, thus providing potential as a cell-free tissue engineering system for direct pulp capping.


Assuntos
Polpa Dentária , Cálcio , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Quitosana , Humanos , Odontoblastos , Alicerces Teciduais
9.
Int J Paediatr Dent ; 30(5): 650-659, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32077547

RESUMO

BACKGROUND: Primary and permanent teeth composition may influence dissolution and degradation rates. AIM: To compare the dissolution and degradation of primary and permanent teeth. DESIGN: Enamel and dentin powders were obtained from primary molars and premolars and incubated within different pH buffers. Calcium and inorganic phosphate release was quantified in the buffers by atomic absorption and light spectrophotometry. A colorimetric assay was used to assess the MMP activity of primary dentin (PrD) and permanent dentin (PeD). Collagen degradation was assessed by dry mass loss, change in elastic modulus (E), and ICTP and CTX release. Data were submitted to ANOVA and Tukey's tests (α = 0.05). RESULTS: Similar dissolution was found between PrD and PeD after 256 hours. At pH 4.5, enamel released more minerals than dentin whereas at pH 5.5 the inverse result was observed. MMP activity was similar for both substrates. PrD showed higher dry mass loss after 1 week. In general, greater reduction in E was recorded for PrD. Higher quantities of ICTP and CTX were released from PrD after 1 week. CONCLUSIONS: Primary and permanent teeth presented similar demineralization rates. Collagen degradation, however, was faster and more substantial for PrD.


Assuntos
Dentina , Metaloproteinases da Matriz , Dentição Permanente , Dente Molar , Solubilidade
10.
Clin Oral Investig ; 23(9): 3457-3469, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30552591

RESUMO

OBJECTIVES: To assess the biological, antimicrobial, and mechanical effects of the treatment of deep dentin with simvastatin (SV) before application of a glass-ionomer cement (GIC). MATERIALS AND METHODS: Dentin discs were adapted to artificial pulp chambers and SV (2.5 or 1.0 mg/mL) was applied to the occlusal surface, either previously conditioned or not with EDTA (±EDTA). The extracts (culture medium + SV that diffused through dentin) was obtained and then applied to cultured odontoblast-like MDPC-23 cells. Cell viability, alkaline phosphatase (ALP) activity, and mineralization nodule (MN) deposition were evaluated. Untreated discs were used as control. The antibacterial activity of SV (2.5 or 1.0 mg/mL) against Streptococcus mutans and Lactobacillus acidophilus, as well as the bond strength of GIC to dentin in the presence of SV 2.5 mg/mL (±EDTA) were also assessed. The data were analyzed by ANOVA/Tukey tests (α = 5%). RESULTS: EDTA + SV 2.5 mg/mL significantly enhanced the ALP activity and MN deposition in comparison with the control, without changing in the cell viability (p < 0.05). The association EDTA + SV 2.5 mg/mL + GIC determined the highest ALP and MN values (p < 0.05). SV presented intense antimicrobial activity, and the EDTA dentin conditioning followed by SV application increased bond strength values compared with SV treatment alone (p < 0.05). CONCLUSION: SV presents antimicrobial activity and diffuses across conditioned dentin to biostimulate odontoblast-like pulp cells. CLINICAL SIGNIFICANCE: The use of SV as adjuvant agent for indirect pulp capping may biostimulate pulp cells thus preserving vitality and function of the pulp-dentin complex.


Assuntos
Forramento da Cavidade Dentária , Inibidores de Hidroximetilglutaril-CoA Redutases , Sinvastatina , Dentina/efeitos dos fármacos , Dentina/microbiologia , Cimentos de Ionômeros de Vidro , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Odontoblastos , Sinvastatina/uso terapêutico
11.
Lasers Med Sci ; 33(2): 445-449, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28285410

RESUMO

Reepithelialization and wound closure are the desired outcome for several ulcerative conditions. Such resolution reduces the possibility of wound contamination and maintenance of the injury and improves the reestablishment of tissue morphology and functions. Investigators are seeking adjuvant therapies that can accelerate wound healing and are developing new strategies for clinical applications. This study compared the effects of epidermal growth factor (EGF) application and low-level laser therapy (LLLT) on cultured epithelial cells. Cells were seeded in 24-well plates. After a 24-h incubation, the epithelial cells were either treated with EGF (100 µM in serum-free DMEM for 72 h) or subjected to LLLT (780 nm, 25 mW, 0.5, 1.5, and 3 J/cm2) by three applications every 24 h. Seventy-two hours after cells were treated with EGF or LLLT, cell migration, viability, proliferation, and collagen synthesis were assessed. Cells treated with EGF showed increased cell viability, proliferation, and collagen synthesis compared with those cells that received no treatment. LLLT enhanced cell migration; however, no significant effects of laser irradiation on other cell functions were observed. Comparison of both therapies demonstrated that EGF and LLLT enhanced specific epithelial cell activities related to wound healing.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Colágeno/biossíntese , Células Epiteliais/efeitos dos fármacos , Humanos
12.
Lasers Med Sci ; 32(1): 45-52, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27677475

RESUMO

This study evaluated the effects of low-level laser therapy (LLLT) and epidermal growth factor (EGF) on fibroblasts obtained from young and elderly individuals. Gingival fibroblasts from young (Y) and elderly (E) individuals were seeded in wells of 24-well plates with Dulbecco's modified Eagle's medium (DMEM) containing 10 % of fetal bovine serum (FBS). After 24 h, the cells were irradiated (LASERTable-InGaAsP-780 ± 3 nm, 25 mW, 3 J/cm2) or exposed to EGF (100 µM). After 72 h, cells were evaluated for viability, migration, collagen and vascular endothelial growth factor (VEGF) synthesis, and gene expression of growth factors. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α = 5 %). Y and E fibroblasts irradiated with laser or exposed to EGF showed increased viability and collagen synthesis. Enhanced cell migration was observed for Y fibroblasts after both treatments, whereas only the LLLT stimulated migration of E cells. VEGF synthesis was higher for Y and E cells exposed to EGF, while this synthesis was reduced when E fibroblasts were irradiated. Increased gene expression of VEGF was observed only for Y and E fibroblasts treated with LLLT. Regardless of a patient's age, the LLLT and EGF applications can biostimulate gingival fibroblast functions involved in tissue repair.


Assuntos
Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Gengiva/citologia , Terapia com Luz de Baixa Intensidade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adolescente , Adulto , Idoso , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia a Laser , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adulto Jovem
13.
Clin Oral Investig ; 21(9): 2827-2839, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28281011

RESUMO

OBJECTIVE: The study aims to evaluate the odontogenic potential of human dental pulp cells (HDPCs) in contact with an experimental porous chitosan-collagen scaffold (CHC) enriched or not with a mineral phase of calcium-aluminate (CHC-CA). MATERIAL AND METHODS: To assess the chemotactic effect of the materials, we placed HDPCs seeded on transwell membranes in intimate contact with the CHC or CHC-CA surface, and the cell migration was monitored for 48 h. Additionally, cells were seeded onto the material surface, and the viability and proliferation were evaluated at several time points. To assess the odontoblastic differentiation, we evaluated ALP activity, DSPP/DMP-1 gene expression, and mineralized matrix deposition. HDPCs cultured onto a polystyrene surface (monolayer) were used as negative control group. RESULTS: The experimental CHC-CA scaffold induced intense migration of HDPCs through transwell membranes, with cells attaching to and spreading on the material surface after 24-h incubation. Also, the HDPCs seeded onto the CHC-CA scaffold were capable of migrating inside it, remaining viable and featuring a proliferative rate more rapid than that of CHC and control groups at 7 and 14 days of cell culture. At long-term culture, cells in the CHC-CA scaffold featured the highest deposition of mineralized matrix and expression of odontoblastic markers (ALP activity and DSPP/DMP-1 gene expression). CONCLUSIONS: According to the results, the CHC-CA scaffold is a bioactive and cytocompatible material capable of increasing the odontogenic potential of human pulp cells. Based on analysis of the positive data obtained in this study, one can suggest that the CHC-CA scaffold is an interesting future candidate for the treatment of exposed pulps. CLINICAL RELEVANCE: The experimental scaffold composed by a chitosan-collagen matrix mineralized with calcium aluminate seems to be an interesting candidate for in vivo application as a cell-free approach to dentin tissue engineering, which may open a new perspective for the treatment of exposed pulp tissue.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Quitosana/farmacologia , Colágeno/farmacologia , Polpa Dentária/citologia , Odontogênese/efeitos dos fármacos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia , Humanos
14.
Clin Oral Investig ; 20(7): 1559-66, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26481234

RESUMO

OBJECTIVES: The aim of this study was to evaluate the transdentinal cytotoxicity of components released from different resin-based luting cements to cultured MDPC-23 odontoblast-like cells and human dental pulp cells (HDPCs). MATERIALS AND METHODS: Artificial pulp chamber (APC)/dentin disc sets were distributed into four groups according to the materials tested (n = 10), as follows: G1, control (no treatment); G2, resin-modified glass-ionomer cement (RelyX Luting 2); G3, self-adhesive resin cement (RelyX U200); and G4, conventional resin cement (RelyX ARC). The materials were applied to the occlusal surfaces (facing up) of the dentin discs adapted to the APCs. The pulpal surfaces of the discs were maintained in contact with culture medium. Then, an aliquot of 400 µL from the extract (culture medium + resin-based components that diffused through dentin) of each luting cement was applied for 24 h to HDPCs or MDPC-23 cells previously seeded in wells of 24-well plates. Cell viability analysis was performed by the MTT assay (1-way ANOVA/Tukey test; α = 5 %). RESULTS: For MDPC-23 cells, RelyX ARC (G4) and RelyX Luting 2 (G2) caused greater reduction in cell viability compared with the negative control group (P < 0.05). Only the HDPCs exposed to RelyX ARC (G4) extract showed a tendency toward viability decrease (9.3 %); however, the values were statistically similar to those of the control group (G1) (P > 0.05). CONCLUSIONS: In accordance with the safe limits of ISO 10993-5:1999 (E) recommendations, all resin-based luting cements evaluated in this study can be considered as non-toxic to pulp cells. CLINICAL RELEVANCE: Cytotoxicity of resin-based luting cements is material-dependent, and the different protocols for the application of these dental materials to dentin may interfere with their cytotoxicity.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/toxicidade , Resinas Compostas/toxicidade , Cimentos Dentários/toxicidade , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Dentina/efeitos dos fármacos , Cimentos de Ionômeros de Vidro/toxicidade , Odontoblastos/efeitos dos fármacos , Polietilenoglicóis/toxicidade , Ácidos Polimetacrílicos/toxicidade , Cimentos de Resina/toxicidade , Sobrevivência Celular , Humanos , Técnicas In Vitro , Teste de Materiais , Dente Molar
15.
Gen Dent ; 64(4): 33-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27367631

RESUMO

This study evaluated whether a restorative resin-modified glass ionomer cement, Vitremer (VM), would be biocompatible with pulp tissue when used as a liner in very deep cavities prepared in young human permanent teeth. Two dental cements in current use as liner materials, Vitrebond (VB) and Dycal (DY), were compared to VM. Class V cavities were prepared in 36 sound premolars that were scheduled for extraction, and the cavity floor was lined with the restorative cement (VM) or a liner/base control cement (VB or DY). For VM specimens, the cavity floor was pretreated with a primer (polyacrylic acid plus 2-hydroxyethyl methacrylate). Teeth were extracted after 7 or 30 days and processed for microscopic evaluation. In the VM group, inward diffusion of dental material components through dentinal tubules, associated with disruption of the odontoblastic layer, moderate to intense inflammatory response, and resorption of inner dentin, was observed in 2 teeth at 7 days. These histologic features were observed in 1 tooth at 30 days. In the VB group, mild inflammatory reactions and tissue disorganization observed at 7 days were resolved at 30 days. No pulpal damage occurred in the DY specimens. Of the materials tested, only Vitremer was not considered biocompatible, because it caused persistent pulpal damage when applied in very deep cavities (remaining dentin thickness less than 0.3 mm).


Assuntos
Materiais Biocompatíveis/uso terapêutico , Cárie Dentária/cirurgia , Restauração Dentária Permanente/métodos , Cimentos de Ionômeros de Vidro/uso terapêutico , Cimentos de Resina/uso terapêutico , Adolescente , Humanos
16.
J Adhes Dent ; 17(2): 155-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25763410

RESUMO

PURPOSE: To assess the cytotoxicity of 35% hydrogen peroxide (HP) bleaching gel applied for 15 min to sound or restored teeth with two-step self-etching adhesive systems and composite resin. MATERIALS AND METHODS: Sound and restored enamel/dentin disks were stored in water for 24 h or 6 months + thermocycling. The disks were adapted to artificial pulp chambers and placed in compartments containing culture medium. Immediately after bleaching, the culture medium in contact with dentin was applied for 1 h to previously cultured odontoblast-like MDPC-23 cells. Thereafter, cell viability (MTT assay) and morphology (SEM) were assessed. Data were analyzed by two-way ANOVA and Tukey's test (a = 5%). RESULTS: In comparison to the negative control group (no treatment), no significant cell viability reduction occurred in those groups in which sound teeth were bleached. However, a significant decrease in cell viability was observed in the adhesive-restored bleached groups compared to negative control. No significant difference among bleached groups was observed with respect to the presence of restoration and storage time. CONCLUSION: The application of 35% HP bleaching gel to sound teeth for 15 min does not cause toxic effects in pulp cells. When this bleaching protocol was performed in adhesive-restored teeth, a significant toxic effect occurred.


Assuntos
Polpa Dentária/efeitos dos fármacos , Restauração Dentária Permanente/métodos , Peróxido de Hidrogênio/toxicidade , Clareadores Dentários/toxicidade , Clareamento Dental/métodos , Condicionamento Ácido do Dente/métodos , Animais , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resinas Compostas/química , Meios de Cultura , Esmalte Dentário/efeitos dos fármacos , Materiais Dentários/química , Polpa Dentária/citologia , Dentina/efeitos dos fármacos , Cura Luminosa de Adesivos Dentários , Camundongos , Odontoblastos/efeitos dos fármacos , Temperatura , Fatores de Tempo
17.
Clin Oral Investig ; 19(5): 1013-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25248948

RESUMO

OBJECTIVES: To evaluate human dental pulp stem cell viability and capacity to recover from experimental dental bleaching techniques. MATERIAL AND METHODS: Enamel/dentin disks adapted to trans-wells were positioned on previously cultivated dental pulp stem cells. Bleaching gels containing 35, 17.5, 10, and 8 % hydrogen peroxide (H2O2) were applied one or three times (each application lasting 15 min) on enamel. Cell viability (MTT assay) and morphology (SEM) were evaluated immediately (T1) or 72 h (T2) post-bleaching. RESULTS: The 35 % H2O2 gel promoted intense reduction in viability (93-97 %) and morphological alterations of the cells at T1, irrespective of frequency of application, with absence or limited capacity for recovery being observed at T2. The other bleaching gels presented significant lower toxicity when compared with the 35 % H2O2 gel, in a time/concentration fashion. In T1, no significant difference was observed between the negative control (without bleaching) and the 8 and 10 % H2O2 gels applied on enamel for 15 min, in which the cells presented elevated viability and morphology similar to the negative control at T2. CONCLUSIONS: Bleaching gels with 8 and 10 % H2O2 in their composition cause limited immediate toxic effect on pulp stem cells, which recover their viability 3 days after treatment. CLINICAL RELEVANCE: This study presents proposals for in-office dental bleaching to be performed with limited aggressive effect on dental pulp stem cells. Therefore, we are able to offer interesting clinical alternatives for bleaching vital teeth, under professional supervision, maintaining the integrity and reparative capacity of pulp-dentin complex.


Assuntos
Polpa Dentária/citologia , Peróxido de Hidrogênio/toxicidade , Células-Tronco/efeitos dos fármacos , Clareadores Dentários/toxicidade , Clareamento Dental/métodos , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Géis , Humanos , Técnicas In Vitro , Propriedades de Superfície , Fatores de Tempo
18.
Clin Oral Investig ; 19(3): 673-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25035067

RESUMO

OBJECTIVES: This study evaluated the color alteration, cytotoxicity, and hydrogen peroxide (HP) diffusion associated with different in-office bleaching protocols. MATERIALS AND METHODS: Bovine enamel/dentin disks were subjected to three bleaching sessions with 35 % HP (three 15-min applications), 35 % HP (one 45-min application), or 20 % HP (one 45-min application). The control group was not bleached. Before bleaching, the disks were adapted to artificial pulp chambers positioned in compartments containing 1 ml of acetate buffer or medium, so that the dentin remained in contact with these substances. Immediately after bleaching, the HP that diffused through the disks was stabilized by acetate buffer and was quantified (two-way repeated measures ANOVA/Fisher's protected least significant difference (PLSD) test; α = 5 %). Cells of mouse dental papilla cell-23 (MDPC-23) were incubated in this culture media for 1 h, followed by analysis of cellular metabolism (methyl tetrazolium assay) (one-way ANOVA/Tukey test; α = 5 %) and morphology (scanning electron microscopy). The specimen color alteration (ΔE) was analyzed by reflection spectrophotometry (two-way repeated measures ANOVA/Fisher's PLSD test; α = 5 %). RESULTS: All protocols showed equal effectiveness at the end of the treatment. HP diffusion was significantly higher in the groups bleached with 35 % HP. Reapplication of 35 % HP resulted in increased diffusion only in the first session; however, the decrease in cell metabolism was similar for all studied protocols. CONCLUSION: Despite greater peroxide diffusion in the groups treated with 35 % HP, all protocols showed the same effectiveness and were cytotoxic to MDPC-23 cells. CLINICAL RELEVANCE: Bleaching protocols using high HP concentrations should be avoided because they exert aggressive actions on odontoblast-like cells.


Assuntos
Peróxido de Hidrogênio/farmacologia , Odontoblastos/efeitos dos fármacos , Clareadores Dentários/farmacologia , Animais , Bovinos , Esmalte Dentário/efeitos dos fármacos , Difusão , Ensaio de Imunoadsorção Enzimática , Peróxido de Hidrogênio/toxicidade , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Varredura , Clareamento Dental , Clareadores Dentários/toxicidade
19.
J Adhes Dent ; 16(2): 123-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24102064

RESUMO

PURPOSE: To assess the influence of adhesive restorations on hydrogen peroxide (H2O2) diffusion through enamel and dentin and its cytotoxicity to pulp (MDPC-23) cells. MATERIALS AND METHODS: Sound and resin-restored enamel/dentin disks were stored in water for 24 h or 6 months and adapted to artificial pulp chambers. Bleaching gels with 20% or 35% H2O2 were applied to the enamel surface for 45 min, and a culture medium in direct contact with the dentin surface (extract) was applied for 1 h to the MDPC-23 cells. Cell metabolism (MTT assay) and cell morphology (SEM) were assessed. The amount of H2O2 in the extracts was also quantified (peroxidase/leuco-crystal violet reaction). RESULTS: A significant reduction in cell metabolism was observed between the group bleached with the 35% gel and the control group (sound, nonbleached) (p < 0.05). The H2O2 diffusion was directly related to its concentration in the bleaching gel. The variables "presence of restoration" and "time of water storage" did not significantly influence H2O2 diffusion or cell metabolism for either of the bleaching gels (p > 0.05). All bleached groups presented alterations in cell morphology related to the concentration of H2O2 in the bleaching gel. CONCLUSION: The reduction in cell metabolism and the changes in cell morphology were H2O2-concentration dependent, having no relationship with the presence of either new or aged adhesive restorations on teeth subjected to bleaching therapies.


Assuntos
Resinas Compostas/química , Materiais Dentários/química , Polpa Dentária/efeitos dos fármacos , Restauração Dentária Permanente , Peróxido de Hidrogênio/toxicidade , Clareadores Dentários/toxicidade , Animais , Bis-Fenol A-Glicidil Metacrilato/química , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Esmalte Dentário/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Dentina/efeitos dos fármacos , Difusão , Cultura em Câmaras de Difusão , Masculino , Teste de Materiais , Microscopia Eletrônica de Varredura , Fatores de Tempo , Água/química
20.
Clin Oral Investig ; 18(6): 1631-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24264642

RESUMO

OBJECTIVES: The objective of this study was to evaluate the bleaching effectiveness, hydrogen peroxide diffusion (H2O2), and cytotoxicity of a bleaching gel with 35 % H2O2 either associated with ferrous sulfate (FeSO4) or not. MATERIALS AND METHODS: Enamel/dentin discs adapted to artificial pulp chambers were placed in compartments containing a culture medium (Dulbecco's Modified Eagle's Medium (DMEM)) and distributed into the following groups: G1-no treatment (negative control), G2-10 % carbamide peroxide (one application for 4 h), G3-35 % H2O2 (three applications for 15 min), and G4-35 % H2O2 + 0.004 g FeSO4 (three applications for 15 min). After treatments, the extracts (DMEM + bleaching components that diffused across enamel and dentin) were applied on human dental pulp cells (HDPCs) and odontoblast-like cells (MDPC-23). Cell viability (MTT assay, Kruskal-Wallis and Mann-Whitney, α = 5 %), quantification of H2O2 diffusion, and color change of the enamel/dentin discs (Commission Internationale de I'Eclairage L*a*b* system) were assessed (analysis of variance and Tukey's tests, α = 5 %). RESULTS: For both cells, a significant reduction in cell viability was observed for G3 and G4 compared with G1 and G2. No statistical difference was observed between G3 and G4. The rate of H2O2 diffusion was significantly higher in G3 compared with that in G2 and G4. The ΔE value for G4 was statistically higher than that of the other groups. CONCLUSIONS: Chemical activation of H2O2 by FeSO4 improves the bleaching effectiveness. However, this metal ion has no significant protective effect against pulp cell cytotoxicity. CLINICAL RELEVANCE: Although the chemical activation of H2O2 by adding FeSO4 to the bleaching agent improved the bleaching effectiveness, this metal ion has no significant protective effect against pulp cell cytotoxicity.


Assuntos
Polpa Dentária/efeitos dos fármacos , Géis , Peróxido de Hidrogênio/farmacologia , Odontoblastos/efeitos dos fármacos , Clareamento Dental , Células Cultivadas , Polpa Dentária/citologia , Humanos , Peróxido de Hidrogênio/química , Odontoblastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA