Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Res ; 207: 112192, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634313

RESUMO

Phycoremediation of swine wastewater is an attractive treatment to remove contaminants and simultaneously produce valuable feedstock biomass. However, there is a lack of information about the application of phycoremediation on veterinary antibiotic removal. Thus, this research investigated the degradation of tetracycline, oxytetracycline, chlortetracycline and doxycycline in swine wastewater treated with phycoremediation. The tetracyclines degradation kinetics was adjusted to the pseudo-first-order kinetics model, with kinetic constant k1 in the following: 0.36 > 0.27>0.19 > 0.18 (d-1) for tetracycline, doxycycline, oxytetracycline and chlortetracycline, respectively. The maximum concentration of microalgae biomass (342.4 ± 20.3 mg L-1) was obtained after 11 days of cultivation, when tetracycline was completely removed. Chlortetracycline concentration decreased, generating iso-chlortetracycline and 4-epi-iso-chlortetracycline. Microalgae biomass harvested after antibiotics removal presented a carbohydrate-rich content of 52.7 ± 8.1, 50.1 ± 3.3, 51.4 ± 5.4 and 57.4 ± 10.4 (%) when cultured with tetracycline, oxytetracycline, chlortetracycline and doxycycline, respectively, while the control culture without antibiotics presented a carbohydrate content of 40 ± 6.5%. These results indicate that could be a valuable source for bioenergy conversion.


Assuntos
Microalgas , Animais , Antibacterianos , Microalgas/metabolismo , Suínos , Tetraciclina , Tetraciclinas/metabolismo , Águas Residuárias
2.
Appl Microbiol Biotechnol ; 104(1): 23-31, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31745575

RESUMO

Anticancer drugs are a class of pharmaceutical compounds that have been found in hospital, domestic, and industrial wastewaters and also in surface waters. They have been showing recalcitrance to conventional wastewater treatment technologies and present a potential risk to environment and human health, since they exhibit cytotoxic, teratogenic, and carcinogenic among other effects in higher organisms, even at low concentrations. The presence of these compounds in the environment is a recent challenge for wastewater treatment and some alternative strategies to remove them were already studied, such as white-rot fungi (WRF) technologies. Despite promising results, processes involving fungi are complex, have high reaction times, and require nutrient addition for fungus growth and maintenance. Due to this potential, strategies to make the technology feasible were studied, such as the possibility for direct application of enzymes secreted by WRF. Enzymatic processes were studied in the removal of other pharmaceuticals such as antibiotics, anti-inflammatory, and steroid hormones; however, to the best of our knowledge, there is a gap on literature about their direct action on anticancer drugs.


Assuntos
Antineoplásicos/metabolismo , Lacase/metabolismo , Águas Residuárias/análise , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Ativação Enzimática , Eliminação de Resíduos Líquidos/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-32406796

RESUMO

The effect of tetracyclines used for swine food-production (tetracycline and oxytetracycline) on enriched nitrifying bacteria cultures over time was investigated in this study. Short-term exposure assays were performed in different concentrations of each antibiotic, using ammonia oxidizing bacteria (AOB) culture and nitrifying bacteria. The results pointed out a higher inhibitory effect of tetracycline on both bacterial communities. The AOB was more sensitive to antibiotic exposure when compared to the nitrifying culture. Although high antibiotic concentrations were applied, the half maximal inhibitory concentration (IC50) was achieved only for the AOB culture exposed to tetracycline at a concentration of 273 mg L-1. Nonetheless, the long-term exposure assay demonstrated a reduction of the tetracycline inhibition effect against AOB. The exposure to 100 mg L-1 of tetracycline (TC) did not show relevant influence over ammonium conversion efficiency; however, at 128 mg L-1 of TC, the efficiency decreased from 94% to 72%. Further investigation revealed that TC reduced the final effluent quality due to the development of a resistance mechanism by AOB culture against this antibiotic. This mechanism involves increasing the excretion of extracellular polymeric substances (EPS) and soluble microbial products (SMP), which probably increases BOD, and reduces ammonia consumption by the bacterial culture.


Assuntos
Compostos de Amônio/análise , Nitrificação/efeitos dos fármacos , Esgotos/microbiologia , Tetraciclinas/análise , Drogas Veterinárias/análise , Águas Residuárias/microbiologia , Purificação da Água/métodos , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Oxirredução , Esgotos/química , Suínos , Tetraciclinas/toxicidade , Drogas Veterinárias/toxicidade , Águas Residuárias/química
4.
Water Sci Technol ; 79(11): 2203-2210, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31318358

RESUMO

The present study assessed the carbohydrate and sugar production from Chlorella spp. biomass harvested from a field scale reactor simulating phycoremediation of swine wastewater. The microalgae biomass was mainly composed by (%): carbohydrates (41 ± 0.4), proteins (50 ± 0.4), and lipids (1.3 ± 0.5). The residual sugar present in the biomass was extracted via acid hydrolysis. Among different concentrations of sulfuric acid tested (i.e., 47, 94, 188, 281 and 563 mM), significantly higher sugar content was obtained with 188 mM (0.496 g-sugar g-1 microalgae-DW). The concentration of sugar present in the microalgae did not differ significantly between the biomasses harvested by either centrifugation or coagulation-flocculation. Two commercially available strains of yeast (i.e., Saccharomyces cerevisiae and S. cerevisiae chardonnay) were tested for their capability to ferment sugar from lyophilized microalgae biomass. S. cerevisiae chardonnay showed a significantly faster consumption of sugar during the exponential growth phase. Both strains of yeast were capable of consuming most of the sugar added ≅ 8 g L-1 within 24 h. Overall, the results suggest that carbohydrate-rich microalgae biomass obtained from the phycoremediation of swine wastewaters can play an important role in green design for industries seeking alternative sources of feedstock rich in sugar.


Assuntos
Chlorella , Microalgas , Eliminação de Resíduos Líquidos , Animais , Biomassa , Carboidratos , Saccharomyces cerevisiae , Açúcares , Suínos , Águas Residuárias
5.
Bioprocess Biosyst Eng ; 37(10): 2009-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24700131

RESUMO

Groundwater contamination is becoming a serious problem in many Brazilian regions. European countries started to deal with this issue in the 1980s, mainly caused by the extensive usage of nitrogenous fertilizers and the absence of domestic wastewater treatment. Due to its high solubility, nitrate readily passes through the soil and reaches the aquifer. Thereafter, this ion moves, following groundwater flow, and can be found several kilometers from the area where the pollution occurred. Concern about nitrate contamination is due to the link found between this contaminant and various human health diseases, such as methemoglobin and cancer. Studies carried out in France enabled the design and implementation of several biological denitrification plants throughout the country, in order to remove nitrate from its contaminated groundwater. Heterotrophic denitrification facilities shown to be adequate to treat high water flows with satisfactory nitrate removal efficiency, especially when static media supports are employed. The objective of this research was to evaluate the existence of denitrifying microorganisms in bamboo (Bambusa tuldóides) and verify the feasibility of their use to inoculate a pilot-scale fixed-bed bioreactor. The support material selected to fill the bioreactor bed was commercial polypropylene Pall rings, since such support has a high porosity associated with a wide superficial area. The bioreactor was able to produce and retain a large amount of cells. Using ethanol as carbon source, nitrate (N-NO3(-)) removal efficiency of the bioreactor stood around 80 % for a maximum nitrogen loading rate of approximately 6.5 mg N-NO3 (-) L(-1) h(-1).


Assuntos
Bambusa/química , Desnitrificação , Água Potável , Purificação da Água , Sequência de Bases , Reatores Biológicos , Primers do DNA , Reação em Cadeia da Polimerase em Tempo Real
6.
Aquat Toxicol ; 264: 106706, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837867

RESUMO

The inhibitory effect of the anticancer drug doxorubicin (DOX) on biogas production was evaluated in short-term and long-term exposure assays. The short-term assays reached the DOX IC50 value on 648 ± 50 µg·L-1. In addition, it was found that inhibition caused by the exposure of 10×103 µg·L-1 was reversible after removing DOX from the feeding synthetic medium. Furthermore, DOX can be rapidly sorbed by the biomass (despite the low Kow), which might contribute to the inhibitory effect. The results of long-term exposure assays, when the DOX volumetric loading rate was increased from 100 µgDOX·L-1·day-1 to 200 µgDOX·L-1·day-1, showed that biogas production and COD removal decreased rapidly. However, the methanogenic Archaeas could recover from this exposure, corroborating the results on short-term exposure assays. In conclusion, DOX can play a key role in inhibiting biological wastewater treatment processes if its concentration in hospital wastewater treatment plants increases abruptly.


Assuntos
Antineoplásicos , Microbiota , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Poluentes Químicos da Água/toxicidade , Doxorrubicina
7.
Environ Sci Pollut Res Int ; 29(19): 28565-28571, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988790

RESUMO

Phycoremediation of swine wastewater is a promising treatment since it efficiently removes nutrients and contaminants and, simultaneously, its biomass can be harvested and used to obtain a wide range of valuable compounds and metabolites. In this context, biomass microalgae were investigated for the phycoremediation of swine wastewater, and biomass extracts for its virucidal effect against enveloped and non-enveloped viruses. Microalgae were cultivated in a pilot scale bioreactor fed with swine wastewater as the growth substrate. Hexane, dichloromethane, and methanol were used to obtain the microalgae extracts. Extracts were tested for virucidal potential against HSV-1 and HAdV-5. Virucidal assays were conducted at temperatures that emulate environmental conditions (21 °C) and body temperature (37 °C). The maximum production of microalgae biomass reached a concentration of 318.5 ± 23.6 mgDW L-1. The results showed that phycoremediation removed 100% of ammonia-N and phosphate-P, with rates (k1) of 0.218 ± 0.013 and 0.501 ± 0.038 (day-1), respectively. All microalgae extract reduced 100% of the infectious capacity of HSV-1. The microalgae extracts with dichloromethane and methanol showed inhibition activities at the lowest concentration (3.125 µg mL-1). Virucidal assays against HAdV-5 using microalgae extract of hexane and methanol inhibited the infectious capacity of the virus by 70% at all concentrations tested at 37 °C. At a concentration of 12.5 µg mL-1, the dichloromethane microalgae extract reduced 50-80% of the infectious capacity of HAdV-5, also at 37 °C. Overall, the results suggest that the microalgae can be an attractive source of feedstock biomass for the exploration of alternative virucidal compounds.


Assuntos
Chlorella , Microalgas , Animais , Biomassa , Hexanos , Metanol/metabolismo , Cloreto de Metileno , Microalgas/metabolismo , Nitrogênio/análise , Extratos Vegetais/metabolismo , Suínos , Águas Residuárias
8.
Environ Pollut ; 275: 116603, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33578315

RESUMO

In this critical review, we explored the most recent advances about the fate of antibiotics on biological wastewater treatment plants (WWTP). Although the occurrence of these pollutants in wastewater and natural streams has been investigated previously, some recent publications still expose the need to improve the detection strategies and the lack of information about their transformation products. The role of the antibiotic properties and the process operating conditions were also analyzed. The pieces of evidence in the literature associate several molecular properties to the antibiotic removal pathway, like hydrophobicity, chemical structure, and electrostatic interactions. Nonetheless, the influence of operating conditions is still unclear, and solid retention time stands out as a key factor. Additionally, the efficiencies and pathways of antibiotic removals on conventional (activated sludge, membrane bioreactor, anaerobic digestion, and nitrogen removal) and emerging bioprocesses (bioelectrochemical systems, fungi, and enzymes) were assessed, and our concern about potential research gaps was raised. The combination of different bioprocess can efficiently mitigate the impacts generated by these pollutants. Thus, to plan and design a process to remove and mineralize antibiotics from wastewater, all aspects must be addressed, the pollutant and process characteristics and how it is the best way to operate it to reduce the impact of antibiotics in the environment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
9.
Chemosphere ; 283: 131268, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34182646

RESUMO

Studies on the antimicrobial effects of microalgae extracts are commonly reported using algae biomass grown in sterile synthetic mineral medium and controlled laboratory conditions. However, variations in environmental conditions and culture medium composition are known to alter microalgae biochemical structure possibly affecting the type and concentrations of bioactive compounds with antimicrobial properties. In this work, solvent extracts of the microalgae Chlorella spp. were tested for antimicrobial effects against gram-positive and multidrug resistant pathogenic bacteria Staphylococcus hyicus, Enterococcus faecalis and Streptococcus suis. Microalgae was cultivated at field scale open pond reactor using raw swine wastewater as growth substrate. Dichloromethane or methanol were used to obtain the microalgae extracts. Characterization of the extracts by ultra-high performance liquid chromatography-quadrupole mass spectrometry revealed the presence of 23 phytochemicals with recognized antimicrobial properties. Bacteriostatic activity was observed in plating assays by formation of inhibition zones ranging from 7 to 18 mm in diameter. Only dichloromethane extracts were inhibitory to all three model bacteria. The minimum inhibitory concentration assessed for dichloromethane extracts were 0.5 mg mL-1 for Staphylococcus hyicus and Enterococcus faecalis and 0.2 mg mL-1 for Streptococcus suis. Bactericidal effects were not observed using solvent-extracts at 2 or 5 mg L-1. To the best of authors knowledge, this is the first report on the antimicrobial effects of Chlorella spp. extracts against Staphylococcus hyicus and Streptococcus suis. Overall, Chlorella spp. grown on swine wastewater contains several phytochemicals that could be further explored for the treatment of infections caused by antibiotic-resistant bacteria pathogens.


Assuntos
Chlorella , Microalgas , Animais , Antibacterianos/farmacologia , Bactérias , Suínos , Águas Residuárias
10.
J Hazard Mater ; 409: 124520, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33239208

RESUMO

The degradation of an anticancer drug by laccase was investigated for the first time, bringing a new approach to treat these hazardous substances through the direct enzymatic application. Degradations of doxorubicin by laccase were performed in different enzymatic concentrations, pH values and temperatures through kinetic studies. The highest enzymatic degradation of doxorubicin was achieved at pH 7 and 30 ºC, which resembles effluent characteristics from wastewater treatment plants. Assays were carried out in different doxorubicin concentrations to comprehend the enzymatic kinetics of degradation. Michaelis-Menten kinetic parameters obtained were maximum velocity obtained (Vmax) of 702.8 µgDOX h-1 L-1 and Michaelis-Menten constant (KM) of 4.05 µM, which showed a good affinity for the substrate. The toxicity was evaluated against L-929 cell line, and the degraded doxorubicin solution did not show a reduction in cell viability in the concentration of 250 µg L-1. In contrast, the doxorubicin shows a reduction of 27% in cell viability. Furthermore, in the highest tested concentration (1000 µg L-1), enzymatic degradation reduced in up 41.4% the toxicity of doxorubicin, which indicates laccase degrades doxorubicin to non-toxic compounds. In conclusion, this study provides a new application to laccase since the results showed great potential to remove anticancer drugs from effluents.


Assuntos
Antineoplásicos , Doxorrubicina , Lacase , Purificação da Água , Animais , Antineoplásicos/toxicidade , Linhagem Celular , Doxorrubicina/toxicidade , Cinética , Lacase/metabolismo , Camundongos
11.
Bioresour Technol ; 202: 67-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700760

RESUMO

This work investigated the effects of swine wastewater-derived biogas on microalgae biomass production and nutrient removal rates from piggery wastewater concomitantly with biogas filtration. Photobioreactors with dominant Scenedesmus spp. were prepared using non-sterile digestate and exposed to different photoperiods. In the presence of biogas and autotrophic conditions microalgae yield of 1.1±0.2 g L(-1) (growth rate of 141.8±3.5 mg L(-1) d(-1)) was obtained leading to faster N-NH3 and P-PO4(3-) assimilation rate of 21.2±1.2 and 3.5±2.5 mg L(-1) d(-1), respectively. H2S up to 3000 ppmv was not inhibitory and completely removed. Maximum CO2 assimilation of 219±4.8 mg L(-1) d(-1) was achieved. Biological consumption of CH4 up to 18% v/v was verified. O2 up to 22% v/v was controlled by adding acetate to exacerbate oxygen demand by microorganisms. Microalgae-based wastewater treatment coupled to biogas purification accelerates nutrient removal concomitantly producing valuable biomass and biomethane.


Assuntos
Biocombustíveis/análise , Microalgas/metabolismo , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Scenedesmus/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Amônia/isolamento & purificação , Animais , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Dióxido de Carbono/análise , Filtração , Sulfeto de Hidrogênio/análise , Metano/análise , Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Fotoperíodo , Scenedesmus/crescimento & desenvolvimento , Suínos
12.
Appl Biochem Biotechnol ; 178(7): 1407-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689804

RESUMO

The effects of nitrogen (N) and/or phosphorus (P) starvation on the biochemical composition of native microalgae Chlorella spp. polyculture obtained from the phycoremediation of swine wastewaters were investigated. Microalgae-specific growth rate of 1.2 day(-1) was achieved (30.3 mg L(-1) day(-1)). PO4 (-2) and NH3 were completely removed from swine digestate effluent after 3 and 11 days, respectively. Microalgae harvested immediately after nutrient removal showed high protein (56-59 %) and carbohydrate (25-34 %) but low lipid (1.8-3 %) contents. Depletion of N or P alone stimulated carbohydrate production at the expenses of proteins. Significant lipid accumulation from 3 % ± 0.5 to 16.3 % ± 0.8 was reached only after 25 days following N and P starvation as demonstrated by Nile red-stained cells. Regarding to the effects of harvesting methods on cellular biochemical composition, circumstantial evidences indicate that coagulation-flocculation with tannin may lead to lower protein and lipid amounts but increased carbohydrate content (p < 0.01) as compared to centrifugation.


Assuntos
Biodegradação Ambiental , Carboidratos/biossíntese , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Carboidratos/química , Chlorella/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Microalgas/metabolismo , Suínos , Taninos/química , Taninos/metabolismo , Águas Residuárias/química
13.
Bioresour Technol ; 219: 21-28, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27474854

RESUMO

Appropriate enrichment of anaerobic microorganism's consortium is crucial for accurate biochemical methane potential (BMP) assays. An alternative method to produce and maintain a mesophilic methanogenic inoculum was demonstrated. Three sources of inoculum were mixed and acclimated for 857days in order to reach steady conditions (pH=7.90±0.46; VS/TS>50%; VFA/alkalinity=0.16±0.04gAcetic Acid/ [Formula: see text] ). Biogas yield >80% was obtained after 70days of inoculum acclimation in comparison to standard cellulose (>600mLN/gVS). Methanogen community analysis based on 16S rDNA of the inoculum revealed Archaea concentration of 3×10(12) gene copies/g (Methanobacteriales 8×10(10); Methanomicrobiales 8×10(10); and Methanosarcinales 4×10(11) gene copies/g). The proposed method for development and maintenance of microorganism enrichment inoculum demonstrates consistent BMP data which is a requirement for dependable prediction of biogas production at field scale operations.


Assuntos
Aclimatação , Archaea/metabolismo , Metano/metabolismo , Temperatura , Álcalis/análise , Anaerobiose , Archaea/genética , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Celulose/química , DNA Ribossômico/genética , Ácidos Graxos Voláteis/análise , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
14.
Eng. sanit. ambient ; 25(4): 619-626, jul.-ago. 2020. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1133803

RESUMO

RESUMO O controle do crescimento microbiano é um desafio crescente na produção de petróleo e gás, uma vez que a presença de determinadas bactérias traz impactos econômica e ambientalmente negativos. As bactérias redutoras de sulfato (BRS) são particularmente problemáticas, uma vez que são responsáveis pela corrosão biológica ligada à produção de sulfeto de hidrogênio, efeito conhecido como souring. A principal forma de controle das BRS atualmente é a injeção de biocidas, no entanto essa estratégia, além de requerer aplicação contínua, tem se revelado pouco efetiva na eliminação de biofilmes e é associada a um alto risco de contaminação das águas. Portanto, é necessário que se busquem abordagens mais eficientes e específicas em relação ao controle microbiológico. O uso de vírus bacteriófagos vem ao encontro dessas necessidades, pois eles, após se multiplicarem, geralmente provocam a lise celular, liberando novas partículas virais e evitando que a bactéria se prolifere. Diante disso, este estudo propõe estabelecer um método para a concentração e a determinação da eficiência de recuperação de bacteriófagos de BRS presentes em água de reator oriunda de poços de petróleo. As amostras foram coletadas de dois reatores operados em batelada alimentada e que simulam um poço de petróleo. As amostras de água de reator foram primeiramente clarificadas, os vírus eluídos desse sedimento e, em seguida, concentrados por ultracentrifugação. O concentrado viral foi então purificado com Vertrel XF. Ensaios de semeadura experimental de miofago P1 nas amostras de água do reator revelaram taxa de recuperação viral de 27,7%, contra ao 16% obtidos com outros protocolos.


ABSTRACT The control of microbial growth is an increasing challenge in the production of oil and gas, since the presence of certain bacteria has economic and environmental negative impacts. Sulphate reducing bacteria are particularly problematic, since they are responsible for the biological corrosion associated with the production of hydrogen sulfide, an effect known as souring. The main form of control is the use of biocides; however, this strategy, in addition to requiring continuous application, has proven to be ineffective in the elimination of biofilms and is associated with a high risk of water contamination. Therefore, it is necessary to seek more efficient and specific approaches to microbiological control. The use of bacteriophage viruses meets these needs, because after they multiply, they usually cause cell lysis, releasing new viral particles and preventing the bacteria from proliferating. In view of this, this study proposes to establish a method for the concentration and detection of bacteriophages of Sulphate Reducing Bacteria present in reactor water from oil wells. The samples were collected from two reactors, operated in a batch fed to simulate an oil well. The reactor water samples were first clarified, viruses adsorbed to sediment were eluted and then concentrated by ultracentrifugation. The viral concentrate was then purified with Vertrel-XF. Experimental seeding of P1 myophage in water samples from the reactor revealed a viral recovery rate of 27.7%, compared to the 16% obtained by use of other protocols.

15.
Appl Biochem Biotechnol ; 174(5): 1810-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149457

RESUMO

Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells.


Assuntos
Nitratos/administração & dosagem , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Proteobactérias/metabolismo , Microbiologia da Água , Purificação da Água/métodos , Biodegradação Ambiental , Proteobactérias/efeitos dos fármacos
16.
Braz. arch. biol. technol ; 51(5): 1033-1047, Sept.-Oct. 2008. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-495833

RESUMO

The present work focuse on the impact of O2, CO2 and ethylene concentrations on ripening rate control of bananas as a contribution for the development of domestic equipments that could allow the user to drive the fruit shelf live. It represented the adjustment of metabolic activity rates in order to manage the maturity process. Ripening variables such as ethylene and CO2 concentrations and temperature were adjusted to accelerate or slow down the process, while the maturity degree was monitored through the physical and chemical parameters and sensorial analysis. Therefore, the objective of this work was to evaluate the influence of these parameters to manage the banana ripening. The optimum temperature was at 25 ºC of storage. The presence of oxygen, CO2 withdraws and ethylene injection were relevant for the ripening process. The "ready-to-eat" quality was achieved in 6 days in confined system. The use of ethylene as trigger was adequate to accelerate the ripening process with advantages in fruit color.


O presente trabalho foca no impacto da concentração de O2, CO2 e etileno no controle da taxa de amadurecimento de bananas, como contribuição para o desenvolvimento de equipamentos domésticos que permitam o controle pelo próprio usuário da vida de prateleira de frutas. Isto representa o ajuste das atividades metabólicas para garantir o controle do amadurecimento. Variáveis como concentração de etileno e CO2 e temperatura foram ajustadas para acelerar ou reduzir o processo, enquanto que o grau de maturação foi monitorado através de parâmetros físico-químicos e sensoriais. Desta forma, o objetivo deste trabalho foi avaliar a influência destes parâmetros para controlar o amadurecimento de banana. A temperatura ótima de amadurecimento foi 25ºC. A presença de O2, a retirada de CO2 e a injeção de etileno foram relevantes no processo. A qualidade "pronto-para-consumo" foi obtida em 6 dias em sistema confinado. O uso de etileno como gatilho é adequado para acelerar o amadurecimento, com vantagens para a cor do produto.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA