Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Divers ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658910

RESUMO

Listeria monocytogenes is an important human and animal pathogen able to cause an infection named listeriosis and is mainly transmitted through contaminated food. Among its virulence traits, the ability to form biofilms and to survive in harsh environments stand out and lead to the persistence of L. monocytogenes for long periods in food processing environments. Virulence and biofilm formation are phenotypes regulated by quorum sensing (QS) and, therefore, the control of L. monocytogenes through an anti-QS strategy is promising. This study aimed to identify, by in silico approaches, proteins secreted by lactic acid bacteria (LAB) potentially able to interfere with the agr QS system of L. monocytogenes. The genome mining of Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus NCFM revealed 151 predicted secreted proteins. Concomitantly, the three-dimensional (3D) structures of AgrB and AgrC proteins of L. monocytogenes were modeled and validated, and their active sites were predicted. Through protein-protein docking and molecular dynamic, Serine-type D-Ala-D-Ala carboxypeptidase and L,D-transpeptidase, potentially secreted by L. rhamnosus GG and L. acidophilus NCFM, respectively, were identified with high affinity to AgrB and AgrC proteins, respectively. By inhibiting the translocation of the cyclic autoinducer peptide (cyclic AIP) via AgrB, and its recognition in the active site of AgrC, these LAB proteins could disrupt L. monocytogenes communication by impairing the agr QS system. The application of the QS inhibitors predicted in this study can emerge as a promising strategy in controlling L. monocytogenes in food processing environment and as an adjunct to antibiotic therapy for the treatment of listeriosis.

2.
Mediators Inflamm ; 2021: 1796204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34840526

RESUMO

Periodontal disease is an infectious inflammatory disease related to the destruction of supporting tissues of the teeth, leading to a functional loss of the teeth. Inflammatory molecules present in the exudate are catalyzed and form different metabolites that can be identified and quantified. Thus, we evaluated the inflammatory exudate present in crevicular fluid to identify metabolic biological markers for diagnosing chronic periodontal disease in older adults. Research participants were selected from long-term institutions in Brazil. Participants were individuals aged 65 years or older, healthy, or with chronic periodontal disease. Gas chromatography/mass spectrometry was used to evaluate potential biomarkers in 120 crevicular fluid samples. We identified 969 metabolites in the individuals. Of these, 15 metabolites showed a variable importance with projection score > 1 and were associated with periodontal disease. Further analysis showed that among the 15 metabolites, two (5-aminovaleric acid and serine, 3TMS derivative) were found at higher concentrations in the crevicular fluid, indicating their potential diagnostic power for periodontal disease in older adults. Our findings indicated that some metabolites are present at high concentrations in the crevicular fluid in older adults with periodontal disease and can be used as biomarkers of periodontal disease.


Assuntos
Periodontite Crônica/metabolismo , Metabolômica/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Periodontite Crônica/diagnóstico , Cromatografia Gasosa-Espectrometria de Massas , Líquido do Sulco Gengival/metabolismo , Humanos
3.
Genomics ; 110(6): 442-449, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30367926

RESUMO

Francisella noatunensis subsp. orientalis (FNO) is an important emerging pathogen associated with disease outbreaks in farm-raised Nile tilapia. FNO genetic diversity using PCR-based typing, no intra-species discrimination was achieved among isolates/strains from different countries, thus demonstrating a clonal behaviour pattern. In this study, we aimed to evaluate the population structure of FNO isolates by comparing whole-genome sequencing data. The analysis of recombination showed that Brazilian isolates group formed a clonal population; whereas other lineages are also supported by this analysis for isolates from foreign countries. The whole-genome multilocus sequence typing (wgMLST) analysis showed varying numbers of dissimilar alleles, suggesting that the Brazilian clonal population are in expansion. Each Brazilian isolate could be identified as a single node by high-resolution gene-by-gene approach, presenting slight genetic differences associated to mutational events. The common ancestry node suggests a single entry into the country before 2012, and the rapid dissemination of this infectious agent may be linked to market sales of infected fingerlings.


Assuntos
Francisella/genética , Sequenciamento Completo do Genoma , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Francisella/classificação , Variação Genética , Genômica , Tipagem de Sequências Multilocus
4.
Curr Genomics ; 16(4): 245-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27006628

RESUMO

The number of genomes that have been deposited in databases has increased exponentially after the advent of Next-Generation Sequencing (NGS), which produces high-throughput sequence data; this circumstance has demanded the development of new bioinformatics software and the creation of new areas, such as comparative genomics. In comparative genomics, the genetic content of an organism is compared against other organisms, which helps in the prediction of gene function and coding region sequences, identification of evolutionary events and determination of phylogenetic relationships. However, expanding comparative genomics to a large number of related bacteria, we can infer their lifestyles, gene repertoires and minimal genome size. In this context, a powerful approach called Pan-genome has been initiated and developed. This approach involves the genomic comparison of different strains of the same species, or even genus. Its main goal is to establish the total number of non-redundant genes that are present in a determined dataset. Pan-genome consists of three parts: core genome; accessory or dispensable genome; and species-specific or strain-specific genes. Furthermore, pan-genome is considered to be "open" as long as new genes are added significantly to the total repertoire for each new additional genome and "closed" when the newly added genomes cannot be inferred to significantly increase the total repertoire of the genes. To perform all of the required calculations, a substantial amount of software has been developed, based on orthologous and paralogous gene identification.

5.
Bioinformatics ; 29(2): 215-22, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23142964

RESUMO

MOTIVATION: Homology detection is a long-standing challenge in computational biology. To tackle this problem, typically all-versus-all BLAST results are coupled with data partitioning approaches resulting in clusters of putative homologous proteins. One of the main problems, however, has been widely neglected: all clustering tools need a density parameter that adjusts the number and size of the clusters. This parameter is crucial but hard to estimate without gold standard data at hand. Developing a gold standard, however, is a difficult and time consuming task. Having a reliable method for detecting clusters of homologous proteins between a huge set of species would open opportunities for better understanding the genetic repertoire of bacteria with different lifestyles. RESULTS: Our main contribution is a method for identifying a suitable and robust density parameter for protein homology detection without a given gold standard. Therefore, we study the core genome of 89 actinobacteria. This allows us to incorporate background knowledge, i.e. the assumption that a set of evolutionarily closely related species should share a comparably high number of evolutionarily conserved proteins (emerging from phylum-specific housekeeping genes). We apply our strategy to find genes/proteins that are specific for certain actinobacterial lifestyles, i.e. different types of pathogenicity. The whole study was performed with transitivity clustering, as it only requires a single intuitive density parameter and has been shown to be well applicable for the task of protein sequence clustering. Note, however, that the presented strategy generally does not depend on our clustering method but can easily be adapted to other clustering approaches. AVAILABILITY: All results are publicly available at http://transclust.mmci.uni-saarland.de/actino_core/ or as Supplementary Material of this article. CONTACT: roettger@mpi-inf.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Actinobacteria/classificação , Proteínas de Bactérias/química , Homologia de Sequência de Aminoácidos , Actinobacteria/genética , Actinobacteria/patogenicidade , Algoritmos , Proteínas de Bactérias/genética , Análise por Conglomerados , Genoma Bacteriano , Modelos Genéticos , Filogenia , Alinhamento de Sequência
6.
Vet Res ; 45: 28, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24597857

RESUMO

Caseous lymphadenitis (CLA) is a chronic disease that affects sheep and goats worldwide, and its etiological agent is Corynebacterium pseudotuberculosis. Despite the economic losses caused by CLA, there is little information about the molecular mechanisms of bacterial pathogenesis, and current immune prophylaxis against infection has been unable to reduce the incidence of CLA in goats. Recently, 21 different mutant strains of C. pseudotuberculosis were identified by random mutagenesis. In this study, these previously generated mutants were used in mice vaccination trials to develop new immunogens against CLA. Based on this analysis, CZ171053, an iron-acquisition-deficient mutant strain, was selected. After challenge with a virulent strain, 80% of the animals that were immunized with the CZ171053 strain survived. Furthermore, this vaccination elicited both humoral and cellular responses. Intracellular survival of the bacterium was determined using murine J774 cells; in this assay, the CZ171053 had reduced intracellular viability. Because iron acquisition in intracellular bacteria is considered one of their most important virulence factors during infection, these results demonstrate the immunogenic potential of this mutant against CLA.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/imunologia , Corynebacterium pseudotuberculosis/patogenicidade , Linfadenite/veterinária , Animais , Infecções por Corynebacterium/imunologia , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/prevenção & controle , Corynebacterium pseudotuberculosis/genética , Citocinas/sangue , Imunoglobulinas/sangue , Linfadenite/imunologia , Linfadenite/microbiologia , Linfadenite/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Virulência
7.
J Fungi (Basel) ; 10(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248954

RESUMO

Histoplasmosis is a widespread systemic disease caused by Histoplasma capsulatum, prevalent in the Americas. Despite its significant morbidity and mortality rates, no vaccines are currently available. Previously, five vaccine targets and specific epitopes for H. capsulatum were identified. Immunoinformatics has emerged as a novel approach for determining the main immunogenic components of antigens through in silico methods. Therefore, we predicted the main helper and cytotoxic T lymphocytes and B-cell epitopes for these targets to create a potential multi-epitope vaccine known as HistoVAC-TSFM. A total of 38 epitopes were found: 23 common to CTL and B-cell responses, 11 linked to HTL and B cells, and 4 previously validated epitopes associated with the B subunit of cholera toxin, a potent adjuvant. In silico evaluations confirmed the stability, non-toxicity, non-allergenicity, and non-homology of these vaccines with the host. Notably, the vaccine exhibited the potential to trigger both innate and adaptive immune responses, likely involving the TLR4 pathway, as supported by 3D modeling and molecular docking. The designed HistoVAC-TSFM appears promising against Histoplasma, with the ability to induce important cytokines, such as IFN-γ, TNF-α, IL17, and IL6. Future studies could be carried out to test the vaccine's efficacy in in vivo models.

8.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38239063

RESUMO

Equine strangles is a prevalent disease that affects the upper respiratory in horses and is caused by the Gram-positive bacterium Streptococcus equi. In addition to strangles, other clinical conditions are caused by the two S. equi subspecies, equi and zooepidemicus, which present relevant zoonotic potential. Treatment of infections caused by S. equi has become challenging due to the worldwide spreading of infected horses and the unavailability of effective therapeutics and vaccines. Penicillin treatment is often recommended, but multidrug resistance issues arised. We explored the whole genome sequence of 18 S. equi isolates to identify candidate proteins to be targeted by natural drug-like compounds or explored as immunogens. We considered only proteins shared among the sequenced strains of subspecies equi and zooepidemicus, absent in the equine host and predicted to be essential and involved in virulence. Of these, 4 proteins with cytoplasmic subcellular location were selected for molecular docking with a library of 5008 compounds, while 6 proteins were proposed as prominent immunogens against S. equi due to their probabilities of behaving as adhesins. The molecular docking analyses revealed the best ten ligands for each of the 4 drug target candidates, and they were ranked according to their binding affinities and the number of hydrogen bonds for complex stability. Finally, the natural 5-ring compound C25H20F3N5O3 excelled in molecular dynamics simulations for the increased stability in the interaction with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB). This research paves the way to developing new therapeutics to minimize the impacts caused by S. equi infections.Communicated by Ramaswamy H. Sarma.

9.
J Bacteriol ; 194(23): 6620-1, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23144380

RESUMO

The bacterium Corynebacterium pseudotuberculosis is of major veterinary importance because it affects livestock, particularly sheep, goats, and horses, in several countries, including Australia, Brazil, the United States, and Canada, resulting in significant economic losses. In the present study, we describe the complete genome of the Corynebacterium pseudotuberculosis Cp316 strain, biovar equi, isolated from the abscess of a North American horse.


Assuntos
Corynebacterium pseudotuberculosis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Abscesso/microbiologia , Abscesso/veterinária , Animais , California , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/isolamento & purificação , Doenças dos Cavalos/microbiologia , Cavalos , Dados de Sequência Molecular
10.
J Bacteriol ; 194(12): 3199-215, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22505676

RESUMO

Corynebacterium diphtheriae is one of the most prominent human pathogens and the causative agent of the communicable disease diphtheria. The genomes of 12 strains isolated from patients with classical diphtheria, endocarditis, and pneumonia were completely sequenced and annotated. Including the genome of C. diphtheriae NCTC 13129, we herewith present a comprehensive comparative analysis of 13 strains and the first characterization of the pangenome of the species C. diphtheriae. Comparative genomics showed extensive synteny and revealed a core genome consisting of 1,632 conserved genes. The pangenome currently comprises 4,786 protein-coding regions and increases at an average of 65 unique genes per newly sequenced strain. Analysis of prophages carrying the diphtheria toxin gene tox revealed that the toxoid vaccine producer C. diphtheriae Park-Williams no. 8 has been lysogenized by two copies of the ω(tox)(+) phage, whereas C. diphtheriae 31A harbors a hitherto-unknown tox(+) corynephage. DNA binding sites of the tox-controlling regulator DtxR were detected by genome-wide motif searches. Comparative content analysis showed that the DtxR regulons exhibit marked differences due to gene gain, gene loss, partial gene deletion, and DtxR binding site depletion. Most predicted pathogenicity islands of C. diphtheriae revealed characteristics of horizontal gene transfer. The majority of these islands encode subunits of adhesive pili, which can play important roles in adhesion of C. diphtheriae to different host tissues. All sequenced isolates contain at least two pilus gene clusters. It appears that variation in the distributed genome is a common strategy of C. diphtheriae to establish differences in host-pathogen interactions.


Assuntos
Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/isolamento & purificação , Difteria/microbiologia , Endocardite Bacteriana/microbiologia , Variação Genética , Genoma Bacteriano , Pneumonia Bacteriana/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Transferência Genética Horizontal , Genes Bacterianos , Ilhas Genômicas , Glicolipídeos/genética , Humanos , Dados de Sequência Molecular , Mutagênese Insercional , Prófagos/genética , Regulon , Análise de Sequência de DNA
11.
J Bacteriol ; 194(20): 5718-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23012291

RESUMO

Corynebacterium pseudotuberculosis is a pathogen of great veterinary and economic importance, since it affects livestock, mainly sheep and goats, worldwide, together with reports of its presence in camels in several Arabic, Asiatic, and East and West African countries, as well as Australia. In this article, we report the genome sequence of Corynebacterium pseudotuberculosis strain Cp162, collected from the external neck abscess of a camel in the United Kingdom.


Assuntos
Corynebacterium pseudotuberculosis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Abscesso/microbiologia , Abscesso/veterinária , Animais , Camelus , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/isolamento & purificação , Dados de Sequência Molecular , Reino Unido
13.
Vaccines (Basel) ; 10(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35891183

RESUMO

Syphilis, a sexually transmitted infection caused by the spirochete Treponema pallidum, has seen a resurgence over the past years. T. pallidum is capable of early dissemination and immune evasion, and the disease continues to be a global healthcare burden. The purpose of this study was to design a multi-epitope immunogen through an immunoinformatics-based approach. Multi-epitope immunogens constitute carefully selected epitopes belonging to conserved and essential bacterial proteins. Several physico-chemical characteristics, such as antigenicity, allergenicity, and stability, were determined. Further, molecular docking and dynamics simulations were performed, ensuring binding affinity and stability between the immunogen and TLR-2. An in silico cloning was performed using the pET-28a(+) vector and codon adaptation for E. coli. Finally, an in silico immune simulation was performed. The in silico predictions obtained in this work indicate that this construct would be capable of inducing the requisite immune response to elicit protection against T. pallidum. Through this methodology we have designed a promising potential vaccine candidate for syphilis, namely Tpme-VAC/LGCM-2022. However, it is necessary to validate these findings in in vitro and in vivo assays.

14.
Front Bioinform ; 2: 912795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304288

RESUMO

Probiotics are health-beneficial microorganisms with mainly immunomodulatory and anti-inflammatory properties. Lactobacillus delbrueckii species is a common bacteria used in the dairy industry, and their benefits to hosting health have been reported. This study analyzed the core genome of nine strains of L. delbrueckii species with documented probiotic properties, focusing on genes related to their host health benefits. For this, a combined methodology including several software and databases (BPGA, SPAAN, BAGEL4, BioCyc, KEEG, and InterSPPI) was used to predict the most important characteristics related to L. delbrueckii strains probiose. Comparative genomics analyses revealed that L. delbrueckii probiotic strains shared essential genes related to acid and bile stress response and antimicrobial activity. Other standard features shared by these strains are surface layer proteins and extracellular proteins-encoding genes, with high adhesion profiles that interacted with human proteins of the inflammatory signaling pathways (TLR2/4-MAPK, TLR2/4-NF-κB, and NOD-like receptors). Among these, the PrtB serine protease appears to be a strong candidate responsible for the anti-inflammatory properties reported for these strains. Furthermore, genes with high proteolytic and metabolic activity able to produce beneficial metabolites, such as acetate, bioactive peptides, and B-complex vitamins were also identified. These findings suggest that these proteins can be essential in biological mechanisms related to probiotics' beneficial effects of these strains in the host.

15.
Comput Biol Med ; 142: 105194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35007945

RESUMO

Pneumonia is a serious global health problem that accounts for over one million deaths annually. Among the main microorganisms causing pneumonia, Mycoplasma pneumoniae is one of the most common ones for which a vaccine is immediately required. In this context, a multi-epitope vaccine against this pathogen could be the best option that can induce effective immune response avoiding any serious adverse reactions. In this study, using an immunoinformatics approach we have designed a multi-epitope vaccine (mpme-VAC/STV-1) against M. pneumoniae. Our designed mpme-VAC/STV-1 is constructed using CTL (cytotoxic T lymphocyte), HTL (Helper T lymphocyte), and B-cell epitopes. These epitopes are selected from the core proteins of 88 M. pneumoniae genomes that were previously identified through reverse vaccinology approaches. The epitopes were filtered according to their immunogenicity, population coverage, and several other criteria. Sixteen CTL/B- and thirteen HTL/B- epitopes that belong to 5 core proteins were combined together through peptide linkers to develop the mpme-VAC/STV-1. The heat-labile enterotoxin from E. coli was used as an adjuvant. The designed mpme-VAC/STV-1 is predicted to be stable, non-toxic, non-allergenic, non-host homologous, and with required antigenic and immunogenic properties. Docking and molecular dynamic simulation of mpme-VAC/STV-1 shows that it can stimulate TLR2 pathway mediated immunogenic reactions. In silico cloning of mpme-VAC/STV-1 in an expression vector also shows positive results. Finally, the mpme-VAC/STV-1 also shows promising efficacy in immune simulation tests. Therefore, our constructed mpme-VAC/STV-1 could be a safe and effective multi-epitope vaccine for immunization against pneumonia. However, it requires further experimental and clinical validations.


Assuntos
Epitopos de Linfócito T , Mycoplasma pneumoniae , Biologia Computacional/métodos , Epitopos de Linfócito T/química , Escherichia coli , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycoplasma pneumoniae/genética , Vacinas de Subunidades Antigênicas/química
16.
J Biomol Struct Dyn ; 40(20): 10106-10121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34192477

RESUMO

The Gram-negative bacillus Serratia marcescens, a member of Enterobacteriaceae family, is an opportunistic nosocomial pathogen commonly found in hospital outbreaks that can cause infections in the urinary tract, bloodstream, central nervous system and pneumonia. Because S. marcescens strains are resistant to several antibiotics, it is critical the need for effective treatments, including new drugs and vaccines. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 59 strains of S. marcescens. We found 759 core non-host homologous proteins, of which 87 are putative surface-exposed proteins, 183 secreted proteins, and 80 membrane proteins. From these proteins, we predicted seven candidates vaccine targets: a sn-glycerol-3-phosphate-binding periplasmic protein UgpB, a vitamin B12 TonB-dependent receptor, a ferrichrome porin FhuA, a divisome-associated lipoprotein YraP, a membrane-bound lytic murein transglycosylase A, a peptidoglycan lytic exotransglycosylase, and a DUF481 domain-containing protein. We also predicted two drug targets: a N(4)-acetylcytidine amidohydrolase, and a DUF1428 family protein. Using the molecular docking approach for each drug target, we identified and selected ZINC04259491 and ZINC04235390 molecules as the most favorable interactions with the target active site residues. Our findings may contribute to the development of vaccines and new drug targets against S. marcescens. Communicated by Ramaswamy H. Sarma.


Assuntos
Serratia marcescens , Vacinas , Serratia marcescens/genética , Vacinologia , Simulação de Acoplamento Molecular , Genômica
17.
Rev Soc Bras Med Trop ; 55: e0353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36000617

RESUMO

BACKGROUND: Domestic pigeons carry pathogens in their droppings, posing a potential public health problem. METHODS: The phenotypic and genotypic antimicrobial resistances of Staphylococcus aureus and Enterococcus faecium in the feces of urban pigeons near hospitals with intensive care units were measured. RESULTS: Twenty-nine samples showed Enterococcus growth, whereas one was positive for S. aureus. The S. aureus isolate was sensitive to the antibiotics tested via antibiogram, however resistance genes were identified. E. faecium isolates showed phenotypic resistance to gentamicin, erythromycin, and ciprofloxacin. CONCLUSIONS: Antimicrobial profiles harmful to health were demonstrated in bacterial pathogens isolated from the external environment of hospitals.


Assuntos
Enterococcus faecium , Animais , Antibacterianos/farmacologia , Columbidae/microbiologia , Enterococcus faecium/genética , Hospitais , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética
18.
J Bacteriol ; 193(20): 5871-2, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21952544

RESUMO

Campylobacter fetus subsp. venerealis is the etiologic agent of bovine genital campylobacteriosis, a sexually transmitted disease of cattle that is of worldwide importance. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. venerealis NCTC 10354(T) are reported.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter fetus/genética , Doenças dos Bovinos/microbiologia , Genoma Bacteriano , Animais , Sequência de Bases , Infecções por Campylobacter/microbiologia , Campylobacter fetus/isolamento & purificação , Bovinos , Feminino , Masculino , Dados de Sequência Molecular
19.
J Bacteriol ; 193(24): 7025-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22123771

RESUMO

In this work, we report the whole-genome sequence of Corynebacterium pseudotuberculosis bv. equi strain CIP 52.97 (Collection Institut Pasteur), isolated in 1952 from a case of ulcerative lymphangitis in a Kenyan horse, which has evidently caused significant losses to agribusiness. Therefore, obtaining this genome will allow the detection of important targets for postgenomic studies, with the aim of minimizing problems caused by this microorganism.


Assuntos
Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Doenças dos Cavalos/microbiologia , Animais , Sequência de Bases , Infecções por Corynebacterium/microbiologia , Corynebacterium pseudotuberculosis/isolamento & purificação , Cavalos , Quênia , Dados de Sequência Molecular
20.
Microbiol Resour Announc ; 10(48): e0073121, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854719

RESUMO

Pseudomonas sp. strain LAP_36 was isolated from rhizosphere soil from Deschampsia antarctica on King George Island, South Shetland Islands, Antarctica. Here, we report on its draft genome sequence, which consists of 8,794,771 bp with 60.0% GC content and 8,011 protein-coding genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA