Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 32(5): 548-560, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38160742

RESUMO

OBJECTIVE: Cartilage tissue engineering strategies that use autologous chondrocytes require in vitro expansion of cells to obtain enough cells to produce functional engineered tissue. However, chondrocytes dedifferentiate during expansion culture, limiting their ability to produce chondrogenic tissue and their utility for cell-based cartilage repair strategies. The current study identified conditions that favor cartilage production and the mechanobiological mechanisms responsible for these benefits. DESIGN: Chondrocytes were isolated from juvenile bovine knee joints and cultured with (primed) or without (unprimed) a growth factor cocktail. Gene expression, cell morphology, cell adhesion, cytoskeletal protein distribution, and cell mechanics were assessed. Following passage 5, cells were embedded into agarose hydrogels to evaluate functional properties of engineered cartilage. RESULTS: Priming cells during expansion culture altered cell phenotype and chondrogenic tissue production. Unbiased ribonucleic acid-sequencing analysis suggested, and experimental studies confirmed, that growth factor priming delays dedifferentiation associated changes in cell adhesion and cytoskeletal organization. Priming also overrode mechanobiological pathways to prevent chondrocytes from remodeling their cytoskeleton to accommodate the stiff, monolayer microenvironment. Passage 1 primed cells deformed less and had lower yes associated protein 1 activity than unprimed cells. Differences in cell adhesion, morphology, and cell mechanics between primed and unprimed cells were mitigated by passage 5. CONCLUSIONS: Priming suppresses mechanobiologic cytoskeletal remodeling to prevent chondrocyte dedifferentiation, resulting in more cartilage-like tissue-engineered constructs.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Bovinos , Condrócitos/metabolismo , Células Cultivadas , Cartilagem , Engenharia Tecidual/métodos , Condrogênese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
2.
Anal Chem ; 94(21): 7619-7627, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35584293

RESUMO

The COVID-19 pandemic has revealed how an emerging pathogen can cause a sudden and dramatic increase in demand for viral testing. Testing pooled samples could meet this demand; however, the sensitivity of reverse transcription quantitative polymerase chain reaction (RT-qPCR), the gold standard, significantly decreases with an increasing number of samples pooled. Here, we introduce detection of intact virus by exogenous-nucleotide reaction (DIVER), a method that quantifies intact virus and is robust to sample dilution. As demonstrated using two models of severe acute respiratory syndrome coronavirus 2, DIVER first tags membraned particles with exogenous oligonucleotides, then captures the tagged particles on beads functionalized with a virus-specific capture agent (in this instance, angiotensin-converting enzyme 2), and finally quantifies the oligonucleotide tags using qPCR. Using spike-presenting liposomes and spike-pseudotyped lentivirus, we show that DIVER can detect 1 × 105 liposomes and 100 plaque-forming units of lentivirus and can successfully identify positive samples in pooling experiments. Overall, DIVER is well positioned for efficient sample pooling and clinical validation.


Assuntos
COVID-19 , Pandemias , COVID-19/diagnóstico , Humanos , Lipossomos , Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade
3.
Bioinformatics ; 34(21): 3684-3694, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771290

RESUMO

Motivation: The rapid advancement of single cell technologies has shed new light on the complex mechanisms of cellular heterogeneity. Identification of intercellular transcriptomic heterogeneity is one of the most critical tasks in single-cell RNA-sequencing studies. Results: We propose a new cell similarity measure based on cell-pair differentiability correlation, which is derived from gene differential pattern among all cell pairs. Through plugging into the framework of hierarchical clustering with this new measure, we further develop a variance analysis based clustering algorithm 'Corr' that can determine cluster number automatically and identify cell types accurately. The robustness and superiority of the proposed algorithm are compared with representative algorithms: shared nearest neighbor (SNN)-Cliq and several other state-of-the-art clustering methods, on many benchmark or real single cell RNA-sequencing datasets in terms of both internal criteria (clustering number and accuracy) and external criteria (purity, adjusted rand index, F1-measure). Moreover, differentiability vector with our new measure provides a new means in identifying potential biomarkers from cancer related single cell datasets even with strong noise. Prognosis analyses from independent datasets of cancers confirmed the effectiveness of our 'Corr' method. Availability and implementation: The source code (Matlab) is available at http://sysbio.sibcb.ac.cn/cb/chenlab/soft/Corr--SourceCodes.zip. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Análise de Variância , Análise por Conglomerados , Análise de Sequência de RNA
4.
Anal Chem ; 87(5): 2988-95, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25625182

RESUMO

Flow cytometry is a ubiquitous, multiparametric method for characterizing cellular populations. However, this method can grow increasingly complex with the number of proteins that need to be screened simultaneously: spectral emission overlap of fluorophores and the subsequent need for compensation, lengthy sample preparation, and multiple control tests that need to be performed separately must all be considered. These factors lead to increased costs, and consequently, flow cytometry is performed in core facilities with a dedicated technician operating the instrument. Here, we describe a low-cost, label-free microfluidic method that can determine the phenotypic profiles of single cells. Our method employs Node-Pore Sensing to measure the transit times of cells as they interact with a series of different antibodies, each corresponding to a specific cell-surface antigen, that have been functionalized in a single microfluidic channel. We demonstrate the capabilities of our method not only by screening two acute promyelocytic leukemia human cells lines (NB4 and AP-1060) for myeloid antigens, CD13, CD14, CD15, and CD33, simultaneously, but also by distinguishing a mixture of cells of similar size­AP-1060 and NALM-1­based on surface markers CD13 and HLA-DR. Furthermore, we show that our method can screen complex subpopulations in clinical samples: we successfully identified the blast population in primary human bone marrow samples from patients with acute myeloid leukemia and screened these cells for CD13, CD34, and HLA-DR. We show that our label-free method is an affordable, highly sensitive, and user-friendly technology that has the potential to transform cellular screening at the benchside.


Assuntos
Antígenos CD/análise , Antígenos de Superfície/metabolismo , Biomarcadores/análise , Imunofenotipagem/métodos , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/imunologia , Microfluídica/métodos , Antígenos de Superfície/imunologia , Medula Óssea/metabolismo , Humanos , Leucemia Promielocítica Aguda/metabolismo , Porosidade , Análise de Célula Única , Células Tumorais Cultivadas
5.
Sci Adv ; 9(28): eabn5709, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436986

RESUMO

Oogenesis involves transduction of mechanical forces from the cytoskeleton to the nuclear envelope (NE). In Caenorhabditis elegans, oocyte nuclei lacking the single lamin protein LMN-1 are vulnerable to collapse under forces mediated through LINC (linker of nucleoskeleton and cytoskeleton) complexes. Here, we use cytological analysis and in vivo imaging to investigate the balance of forces that drive this collapse and protect oocyte nuclei. We also use a mechano-node-pore sensing device to directly measure the effect of genetic mutations on oocyte nuclear stiffness. We find that nuclear collapse is not a consequence of apoptosis. It is promoted by dynein, which induces polarization of a LINC complex composed of Sad1 and UNC-84 homology 1 (SUN-1) and ZYGote defective 12 (ZYG-12). Lamins contribute to oocyte nuclear stiffness and cooperate with other inner nuclear membrane proteins to distribute LINC complexes and protect nuclei from collapse. We speculate that a similar network may protect oocyte integrity during extended oocyte arrest in mammals.


Assuntos
Proteínas de Caenorhabditis elegans , Membrana Nuclear , Animais , Caenorhabditis elegans/genética , Oogênese/genética , Oócitos , Núcleo Celular , Mamíferos , Laminina , Proteínas de Caenorhabditis elegans/genética
6.
Methods Mol Biol ; 2394: 171-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094328

RESUMO

Node-Pore Sensing, NPS, is an extremely versatile and powerful technique for the analysis of cells and the detection of extracellular vesicles (EVs). NPS involves measuring the modulated current pulse caused by a cell transiting a microfluidic channel that has been segmented by a series of inserted nodes. As the current pulse reflects the number of nodes and segments of the channel, NPS can achieve exquisite sensitivity. Thus, when used as a Coulter counter, NPS can measure the sub-micron size increase of antibody-coated colloids to which EVs are specifically bound. By simply inserting between two nodes a "contraction" channel through which cells can squeeze, one can mechanically phenotype cells. We discuss the details of performing these two NPS applications.


Assuntos
Vesículas Extracelulares , Coloides , Vesículas Extracelulares/metabolismo , Microfluídica
7.
iScience ; 25(2): 103772, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141508

RESUMO

All-trans retinoic acid (ATRA) is an essential therapy in the treatment of acute promyelocytic leukemia (APL), but nearly 20% of patients with APL are resistant to ATRA. As there are no biomarkers for ATRA resistance that yet exist, we investigated whether cell mechanics could be associated with this pathological phenotype. Using mechano-node-pore sensing, a single-cell mechanical phenotyping platform, and patient-derived APL cell lines, we discovered that ATRA-resistant APL cells are less mechanically pliable. By investigating how different subcellular components of APL cells contribute to whole-cell mechanical phenotype, we determined that nuclear mechanics strongly influence an APL cell's mechanical response. Moreover, decondensing chromatin with trichostatin A is especially effective in softening ATRA-resistant APL cells. RNA-seq allowed us to compare the transcriptomic differences between ATRA-resistant and ATRA-responsive APL cells and highlighted gene expression changes that could be associated with mechanical changes. Overall, we have demonstrated the potential of "physical" biomarkers in identifying APL resistance.

8.
J Vis Exp ; (190)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533823

RESUMO

Cellular mechanical properties are involved in a wide variety of biological processes and diseases, ranging from stem cell differentiation to cancer metastasis. Conventional methods for measuring these properties, such as atomic force microscopy (AFM) and micropipette aspiration (MA), capture rich information, reflecting a cell's full viscoelastic response; however, these methods are limited by very low throughput. High-throughput approaches, such as real-time deformability cytometry (RT-DC), can only measure limited mechanical information, as they are often restricted to single-parameter readouts that only reflect a cell's elastic properties. In contrast to these methods, mechano-node-pore sensing (mechano-NPS) is a flexible, label-free microfluidic platform that bridges the gap in achieving multi-parameter viscoelastic measurements of a cell with moderate throughput. A direct current (DC) measurement is used to monitor cells as they transit a microfluidic channel, tracking their size and velocity before, during, and after they are forced through a narrow constriction. This information (i.e., size and velocity) is used to quantify each cell's transverse deformation, resistance to deformation, and recovery from deformation. In general, this electronics-based microfluidic platform provides multiple viscoelastic cell properties, and thus a more complete picture of a cell's mechanical state. Because it requires minimal sample preparation, utilizes a straightforward electronic measurement (in contrast to a high-speed camera), and takes advantage of standard soft lithography fabrication, the implementation of this platform is simple, accessible, and adaptable to downstream analysis. This platform's flexibility, utility, and sensitivity have provided unique mechanical information on a diverse range of cells, with the potential for many more applications in basic science and clinical diagnostics.


Assuntos
Microfluídica , Microfluídica/métodos , Microscopia de Força Atômica
9.
Adv Sci (Weinh) ; 8(23): e2101166, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672117

RESUMO

Lipid-based nanoparticles have been applied extensively in drug delivery and vaccine strategies and are finding diverse applications in the coronavirus disease 2019 (COVID-19) pandemic-from vaccine-component encapsulation to modeling the virus, itself. High-throughput, highly flexible methods for characterization are of great benefit to the development of liposomes featuring surface proteins. DNA-directed patterning is one such method that offers versatility in immobilizing and segregating lipid-based nanoparticles for subsequent analysis. Here, oligonucleotides are selectively conjugated onto a glass substrate and then hybridized to complementary oligonucleotides tagged to liposomes, patterning them with great control and precision. The power of DNA-directed patterning is demonstrated by characterizing a novel recapitulative lipid-based nanoparticle model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-S-liposomes-that presents the SARS-CoV-2 spike (S) protein on its surface. Patterning a mixture of S-liposomes and liposomes that display the tetraspanin CD63 to discrete regions of a substrate shows that angiotensin-converting enzyme 2 (ACE2) specifically binds to S-liposomes. Subsequent introduction of S-liposomes to ACE2-expressing cells tests the biological function of S-liposomes and shows agreement with DNA-directed patterning-based assays. Finally, multiplexed patterning of S-liposomes verifies the performance of commercially available neutralizing antibodies against the two S variants. Overall, DNA-directed patterning enables a wide variety of custom assays for the characterization of any lipid-based nanoparticle.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/diagnóstico , Lipossomos/química , Nanopartículas/química , Oligonucleotídeos/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Corantes Fluorescentes/química , Células HEK293 , Humanos , Lipossomos/metabolismo , Microscopia Confocal , Oligonucleotídeos/metabolismo , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Tetraspaninas/química , Tetraspaninas/metabolismo
10.
ACS Appl Mater Interfaces ; 13(39): 46421-46430, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34546726

RESUMO

Antibodies provide the functional biospecificity that has enabled the development of sensors, diagnostic tools, and assays in both laboratory and clinical settings. However, as multimarker screening becomes increasingly necessary due to the heterogeneity and complexity of human pathology, new methods must be developed that are capable of coordinating the precise assembly of multiple, distinct antibodies. To address this technological challenge, we engineered a bottom-up, high-throughput method in which DNA patterns, comprising unique 20-base pair oligonucleotides, are patterned onto a substrate using photolithography. These microfabricated surface patterns are programmed to hybridize with, and instruct the multiplexed assembly of, antibodies conjugated with the complementary DNA strands. We demonstrate that this simple, yet robust, approach preserves the antibody-binding functionality in two common applications: antibody-based cell capture and label-free surface marker screening. Using a simple proof-of-concept capture device, we achieved high purity separation of a breast cancer cell line, MCF-7, from a blood cell line, Jurkat, with capture purities of 77.4% and 96.6% when using antibodies specific for the respective cell types. We also show that antigen-antibody interactions slow cell trajectories in flow in the next-generation microfluidic node-pore sensing (NPS) device, enabling the differentiation of MCF-7 and Jurkat cells based on EpCAM surface-marker expression. Finally, we use a next-generation NPS device patterned with antibodies against E-cadherin, N-cadherin, and ß-integrin-three markers that are associated with epithelial-mesenchymal transitions-to perform label-free surface marker screening of MCF10A, MCF-7, and Hs 578T breast epithelial cells. Our high-throughput, highly versatile technique enables rapid development of customized, antibody-based assays across a host of diverse diseases and research thrusts.


Assuntos
Anticorpos/imunologia , Separação Celular/métodos , DNA/química , Antígenos CD/imunologia , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Caderinas/imunologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Separação Celular/instrumentação , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Cadeias beta de Integrinas/imunologia , Cadeias beta de Integrinas/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Oligodesoxirribonucleotídeos/química , Estudo de Prova de Conceito
11.
PLoS One ; 16(10): e0258982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695165

RESUMO

Cellular mechanical properties can reveal physiologically relevant characteristics in many cell types, and several groups have developed microfluidics-based platforms to perform high-throughput single-cell mechanical testing. However, prior work has performed only limited characterization of these platforms' technical variability and reproducibility. Here, we evaluate the repeatability performance of mechano-node-pore sensing, a single-cell mechanical phenotyping platform developed by our research group. We measured the degree to which device-to-device variability and semi-manual data processing affected this platform's measurements of single-cell mechanical properties. We demonstrated high repeatability across the entire technology pipeline even for novice users. We then compared results from identical mechano-node-pore sensing experiments performed by researchers in two different laboratories with different analytical instruments, demonstrating that the mechanical testing results from these two locations are in agreement. Our findings quantify the expectation of technical variability in mechano-node-pore sensing even in minimally experienced hands. Most importantly, we find that the repeatability performance we measured is fully sufficient for interpreting biologically relevant single-cell mechanical measurements with high confidence.


Assuntos
Microfluídica/métodos , Fenótipo , Citometria de Fluxo , Reprodutibilidade dos Testes , Análise de Célula Única
12.
medRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791715

RESUMO

The persistence of the COVID-19 pandemic demands a dramatic increase in testing efficiency. Testing pooled samples for SARS-CoV-2 could meet this need; however, the sensitivity of RT-qPCR, the gold standard, significantly decreases with an increasing number of samples pooled. Here, we introduce DIVER, a method that quantifies intact virus and is robust to sample dilution. DIVER first tags viral particles with exogeneous oligonucleotides, then captures the tagged particles on ACE2-functionalized beads, and finally quantifies the oligonucleotide tags using qPCR. Using spike-presenting liposomes and Spike-pseudotyped lentivirus as SARS-CoV-2 models, we show that DIVER can detect 1×10 5 liposomes and 100 pfu lentivirus and can successfully identify positive samples in pooling experiments. Overall, DIVER is well-positioned for efficient sample pooling and expanded community surveillance.

13.
iScience ; 24(9): 103026, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522866

RESUMO

Age is the major risk factor in most carcinomas, yet little is known about how proteomes change with age in any human epithelium. We present comprehensive proteomes comprised of >9,000 total proteins and >15,000 phosphopeptides from normal primary human mammary epithelia at lineage resolution from ten women ranging in age from 19 to 68 years. Data were quality controlled and results were biologically validated with cell-based assays. Age-dependent protein signatures were identified using differential expression analyses and weighted protein co-expression network analyses. Upregulation of basal markers in luminal cells, including KRT14 and AXL, were a prominent consequence of aging. PEAK1 was identified as an age-dependent signaling kinase in luminal cells, which revealed a potential age-dependent vulnerability for targeted ablation. Correlation analyses between transcriptome and proteome revealed age-associated loss of proteostasis regulation. Age-dependent proteome changes in the breast epithelium identified heretofore unknown potential therapeutic targets for reducing breast cancer susceptibility.

14.
J Vis Exp ; (168)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33720126

RESUMO

The relative positioning of cells is a key feature of the microenvironment that organizes cell-cell interactions. To study the interactions between cells of the same or different type, micropatterning techniques have proved useful. DNA Programmed Assembly of Cells (DPAC) is a micropatterning technique that targets the adhesion of cells to a substrate or other cells using DNA hybridization. The most basic operations in DPAC begin with decorating cell membranes with lipid-modified oligonucleotides, then flowing them over a substrate that has been patterned with complementary DNA sequences. Cells adhere selectively to the substrate only where they find a complementary DNA sequence. Non-adherent cells are washed away, revealing a pattern of adherent cells. Additional operations include further rounds of cell-substrate or cell-cell adhesion, as well as transferring the patterns formed by DPAC to an embedding hydrogel for long-term culture. Previously, methods for patterning oligonucleotides on surfaces and decorating cells with DNA sequences required specialized equipment and custom DNA synthesis, respectively. We report an updated version of the protocol, utilizing an inexpensive benchtop photolithography setup and commercially available cholesterol modified oligonucleotides (CMOs) deployed using a modular format. CMO-labeled cells adhere with high efficiency to DNA-patterned substrates. This approach can be used to pattern multiple cell types at once with high precision and to create arrays of microtissues embedded within an extracellular matrix. Advantages of this method include its high resolution, ability to embed cells into a three-dimensional microenvironment without disrupting the micropattern, and flexibility in patterning any cell type.


Assuntos
DNA/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Análise de Célula Única/métodos , Aldeídos/química , Adesão Celular , Comunicação Celular , Sobrevivência Celular , Colesterol/metabolismo , Dimetilpolisiloxanos/química , Compostos de Epóxi/química , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Oligonucleotídeos/metabolismo , Polímeros/química , Coloração e Rotulagem
15.
Lab Chip ; 10(12): 1543-9, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20358051

RESUMO

We demonstrate the use of a microfluidic stagnation point flow to trap and extend single molecules of double-stranded (ds) genomic DNA for detection of target sequences along the DNA backbone. Mutant EcoRI-based fluorescent markers are bound sequence-specifically to fluorescently labeled ds lambda-DNA. The marker-DNA complexes are introduced into a microfluidic cross slot consisting of flow channels that intersect at ninety degrees. Buffered solution containing the marker-DNA complexes flows in one channel of the cross slot, pure buffer flows in the opposing channel at the same flow rate, and fluid exits the two channels at ninety degrees from the inlet channels. This creates a stagnation point at the center of a planar extensional flow, where marker-DNA complexes may be trapped and elongated along the outflow axis. The degree of elongation can be controlled using the flow strength (i.e., a non-dimensional flow rate) in the device. Both the DNA backbone and the markers bound along the stretched DNA are observed directly using fluorescence microscopy, and the location of the markers along the DNA backbone is measured. We find that our method permits detection of each of the five expected target site positions to within 1.5 kb with standard deviations of <1.5 kb. We compare the method's precision and accuracy at molecular extensions of 68% and 88% of the contour length to binding distributions from similar data obtained via molecular combing. We also provide evidence that increased mixing of the sample during binding of the marker to the DNA improves binding to internal target sequences of dsDNA, presumably by extending the DNA and making the internal binding sites more accessible.


Assuntos
Técnicas Analíticas Microfluídicas , Análise de Sequência de DNA/instrumentação , DNA/genética , DNA/metabolismo , Desoxirribonuclease EcoRI/metabolismo , Corantes Fluorescentes/metabolismo , Genômica , Distribuição Normal
16.
Biomicrofluidics ; 14(3): 031301, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32566069

RESUMO

Cancer is the second leading cause of death worldwide. Despite the immense research focused in this area, one is still not able to predict disease trajectory. To overcome shortcomings in cancer disease study and monitoring, we describe an exciting research direction: cellular mechanophenotyping. Cancer cells must overcome many challenges involving external forces from neighboring cells, the extracellular matrix, and the vasculature to survive and thrive. Identifying and understanding their mechanical behavior in response to these forces would advance our understanding of cancer. Moreover, used alongside traditional methods of immunostaining and genetic analysis, mechanophenotyping could provide a comprehensive view of a heterogeneous tumor. In this perspective, we focus on new technologies that enable single-cell mechanophenotyping. Single-cell analysis is vitally important, as mechanical stimuli from the environment may obscure the inherent mechanical properties of a cell that can change over time. Moreover, bulk studies mask the heterogeneity in mechanical properties of single cells, especially those rare subpopulations that aggressively lead to cancer progression or therapeutic resistance. The technologies on which we focus include atomic force microscopy, suspended microchannel resonators, hydrodynamic and optical stretching, and mechano-node pore sensing. These technologies are poised to contribute to our understanding of disease progression as well as present clinical opportunities.

17.
Cell Syst ; 11(3): 209-211, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32888419

RESUMO

Microfabricated and microfluidic devices enable standardized handling, precise spatiotemporal manipulation of cells and liquids, and recapitulation of cellular environments, tissues, and organ-level biology. We asked researchers how these devices can make in vitro experiments more physiologically relevant.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Microtecnologia/métodos , Humanos
18.
Sci Adv ; 6(12): eaay5696, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32206713

RESUMO

Elucidating how the spatial organization of extrinsic signals modulates cell behavior and drives biological processes remains largely unexplored because of challenges in controlling spatial patterning of multiple microenvironmental cues in vitro. Here, we describe a high-throughput method that directs simultaneous assembly of multiple cell types and solid-phase ligands across length scales within minutes. Our method involves lithographically defining hierarchical patterns of unique DNA oligonucleotides to which complementary strands, attached to cells and ligands-of-interest, hybridize. Highlighting our method's power, we investigated how the spatial presentation of self-renewal ligand fibroblast growth factor-2 (FGF-2) and differentiation signal ephrin-B2 instruct single adult neural stem cell (NSC) fate. We found that NSCs have a strong spatial bias toward FGF-2 and identified an unexpected subpopulation exhibiting high neuronal differentiation despite spatially occupying patterned FGF-2 regions. Overall, our broadly applicable, DNA-directed approach enables mechanistic insight into how tissues encode regulatory information through the spatial presentation of heterogeneous signals.


Assuntos
DNA , Modelos Biológicos , Neurônios/fisiologia , Transdução de Sinais , Animais , Biomarcadores , Células Cultivadas , Humanos , Ligantes , Ratos
19.
Anal Chem ; 81(24): 10049-54, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19908852

RESUMO

We have created a fluorescent marker using a mutant EcoRI restriction endonuclease (K249C) that enables prolonged, direct visualization of specific sequences on genomic lengths of double-stranded (ds) DNA. The marker consists of a biotinylated enzyme, attached through the biotin-avidin interaction to a fluorescent nanosphere. Control over biotin position with respect to the enzyme's binding pocket is achieved by biotinylating the mutant EcoRI at the mutation site. Biotinylated enzyme is incubated with dsDNA and NeutrAvidin-coated, fluorescent nanospheres under conditions that allow enzyme binding but prevent cleavage. Marker-laden DNA is then fluorescently stained and stretched on polylysine-coated glass slides so that the positions of the bound markers along individual DNA molecules can be measured. We demonstrate the marker's ability to bind specifically to its target sequence using both bulk gel-shift assays and single-molecule methods.


Assuntos
DNA/análise , DNA/genética , Nanoestruturas/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Avidina/metabolismo , Sequência de Bases , Biotina/metabolismo , Biotinilação , Cristalografia por Raios X , Fluorescência , Modelos Moleculares , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Especificidade por Substrato
20.
Artigo em Inglês | MEDLINE | ID: mdl-29687965

RESUMO

Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.


Assuntos
Citometria de Fluxo/métodos , Microfluídica/métodos , Análise de Célula Única/métodos , Animais , Eletricidade , Humanos , Fenômenos Ópticos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA