Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 559(7712): 103-108, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29925944

RESUMO

Adipocyte development and differentiation have an important role in the aetiology of obesity and its co-morbidities1,2. Although multiple studies have investigated the adipogenic stem and precursor cells that give rise to mature adipocytes3-14, our understanding of their in vivo origin and properties is incomplete2,15,16. This is partially due to the highly heterogeneous and unstructured nature of adipose tissue depots17, which has proven difficult to molecularly dissect using classical approaches such as fluorescence-activated cell sorting and Cre-lox lines based on candidate marker genes16,18. Here, using the resolving power of single-cell transcriptomics19 in a mouse model, we reveal distinct subpopulations of adipose stem and precursor cells in the stromal vascular fraction of subcutaneous adipose tissue. We identify one of these subpopulations as CD142+ adipogenesis-regulatory cells, which can suppress adipocyte formation in vivo and in vitro in a paracrine manner. We show that adipogenesis-regulatory cells are refractory to adipogenesis and that they are functionally conserved in humans. Our findings point to a potentially critical role for adipogenesis-regulatory cells in modulating adipose tissue plasticity, which is linked to metabolic control, differential insulin sensitivity and type 2 diabetes.


Assuntos
Adipogenia , Células Estromais/citologia , Gordura Subcutânea/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Resistência à Insulina , Masculino , Camundongos , Comunicação Parácrina , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Estromais/metabolismo , Gordura Subcutânea/metabolismo , Tromboplastina/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293525

RESUMO

Advanced cell therapy medicinal products (ATMP) are at the forefront of a new range of biopharmaceuticals. The use of ATMP has evolved and increased in the last decades, representing a new approach to treating diseases that are not effectively managed with conventional treatments. The standard worldwide recognized for drug production is the Good Manufacturing Practices (GMP), widely used in the pharma production of synthesized drugs but applying also to ATMP. GMP guidelines are worldwide recognized standards to manufacture medicinal products to guarantee high quality, safety, and efficacy. In this report, we describe the pre-clinical and the GMP upgrade of peripheral blood mononuclear cell (PBMC) preparation, starting from peripheral blood and ending up with a GMP-grade clinical product ready to be used in patients with critical limb ischemia (CLI). We also evaluated production in hypoxic conditions to increase PBMC functional activity and angiogenic potential. Furthermore, we extensively analyzed the storage and transport conditions of the final product as required by the regulatory body for ATMPs. Altogether, results suggest that the whole manufacturing process can be performed for clinical application. Peripheral blood collected by a physician should be transported at room temperature, and PBMCs should be isolated in a clean room within 8 h of venipuncture. Frozen cells can be stored in nitrogen vapors and thawed for up to 12 months. PBMCs resuspended in 5% human albumin solution should be stored and transported at 4 °C before injection in patients within 24 h to thawing. Hypoxic conditioning of PBMCs should be implemented for clinical application, as it showed a significant enhancement of PBMC functional activity, in particular with increased adhesion, migration, and oxidative stress resistance. We demonstrated the feasibility and the quality of a GMP-enriched suspension of monocytes as an ATMP, tested in a clean room facility for all aspects related to production in respect of all the GMP criteria that allow its use as an ATMP. We think that these results could ease the way to the clinical application of ATMPs.


Assuntos
Produtos Biológicos , Medicamentos Sintéticos , Humanos , Leucócitos Mononucleares , Monócitos , Isquemia Crônica Crítica de Membro , Albumina Sérica Humana , Nitrogênio
3.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218011

RESUMO

Defining the best combination of cells and biomaterials is a key challenge for the development of tendon tissue engineering (TE) strategies. Adipose-derived stem cells (ASCs) are ideal candidates for this purpose. In addition, controlled cell-based products adherent to good manufacturing practice (GMP) are required for their clinical scale-up. With this aim, in this study, ASC 3D bioprinting and GMP-compliant tenogenic differentiation were investigated. In detail, primary human ASCs were embedded within a nanofibrillar-cellulose/alginate bioink and 3D-bioprinted into multi-layered square-grid matrices. Bioink viscoelastic properties and scaffold ultrastructural morphology were analyzed by rheology and scanning electron microscopy (SEM). The optimal cell concentration for printing among 3, 6 and 9 × 106 ASC/mL was evaluated in terms of cell viability. ASC morphology was characterized by SEM and F-actin immunostaining. Tenogenic differentiation ability was then evaluated in terms of cell viability, morphology and expression of scleraxis and collagen type III by biochemical induction using BMP-12, TGF-ß3, CTGF and ascorbic acid supplementation (TENO). Pro-inflammatory cytokine release was also assessed. Bioprinted ASCs showed high viability and survival and exhibited a tenocyte-like phenotype after biochemical induction, with no inflammatory response to the bioink. In conclusion, we report a first proof of concept for the clinical scale-up of ASC 3D bioprinting for tendon TE.


Assuntos
Tecido Adiposo/metabolismo , Bioimpressão , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura , Impressão Tridimensional , Células-Tronco/metabolismo , Tenócitos/metabolismo , Tecido Adiposo/citologia , Técnicas de Cultura de Células , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Células-Tronco/citologia , Tenócitos/citologia
4.
Cryobiology ; 69(2): 211-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25037024

RESUMO

In recent years, there has been a shift toward tissue-engineering strategies using stem cells for plastic and reconstructive surgical procedures. Therefore, it is important to develop safe and reproducible protocols for the extraction of adipose-derived stromal cells (ASCs) to allow cells to be stored in liquid nitrogen for future needs. The aspirated liposuction obtained from healthy donors were immediately processed after the suction using a protocol developed in our laboratory. The resulting stromal vascular fraction (SVF) was then characterized by the presence of adipose-derived stromal cells, at later stage frozen in liquid nitrogen. After that, cells were thawed and again characterized by adipose-derived stromal cells, cellular survival, differentiation ability and Colony Forming Unit-Fibroblast like colonies (CFU-F). Extraction and freezing of cells contained in the stromal vascular fraction demonstrate that thawed cells maintain the full capability to grow and differentiate in culture. The advent of adipose-derived stromal cells use in tissue engineering will assume a wide role in esthetic restoration in plastic surgery. It is thus important to develop clinically translatable protocols for the preparation and storage of adipose-derived stromal cells. Our results show that adipose-derived stromal cells in serum free can easily be frozen and stored in liquid nitrogen with retention of 85% of cell viability and 180,890 cell/g yield plus normal proliferative capacity and differentiation potential compared with fresh controls. These observations set the basis for adipose-derived stromal cells banking.


Assuntos
Tecido Adiposo/citologia , Criopreservação/métodos , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Congelamento , Humanos , Pessoa de Meia-Idade , Adulto Jovem
5.
J Clin Med ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38892739

RESUMO

Background: As adipose tissue-derived mesenchymal stem cells are becoming the tool of choice for many clinical applications; standardized cryopreservation protocols are necessary to deliver high-quality samples. For this purpose, the cryopreservation and thawing of native adipose tissue under GMP conditions could represent an extremely useful and powerful tool for the direct reinfusion of the tissue, and consequently, of its stromal vascular fraction. Methods: In this study, 19 samples of adipose tissue were cryopreserved and characterized before and after storage in liquid nitrogen vapors. Of these 19 samples, 14 were processed in research and 5 in a GMP-compliant environment. Storage with and without cryopreservation medium was also evaluated. After one week to three months of storage, samples were thawed, washed, enzymatically digested, and characterized with flow cytometry. Results: The results show that there is a loss of nearly 50% of total nucleated cells during the cryopreservation/thawing process. Non-GMP and GMP samples are comparable for all parameters analyzed. This study also allowed us to exclude the cryopreservation of adipose tissue without any cryopreservation medium. Conclusions: The data shown in this work are consistent with the idea that native adipose tissue, if properly processed and controlled, could be a useful source of cells for regenerative medicine, keeping in mind that there is a clear difference in the quality between fresh and thawed samples.

6.
Biomedicines ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760974

RESUMO

Stromal vascular fraction (SVF) cells, together with adipose-derived mesenchymal stem cells, are becoming the tool of choice for many clinical applications. Currently, nearly 200 clinical trials are running worldwide to prove the efficacy of this cell type in treating many diseases and pathological conditions. To reach the goals of cell therapies and produce ATMPs as drugs for regenerative medicine, it is necessary to properly standardize GMP processes and, thus, collection methods, transportation strategies, extraction protocols, and characterization procedures, without forgetting that all the tissues of the human body are characterized by a wide inter-individual variability which is genetically determined and acquired during life. Here, we compare 302 samples processed under GMP rules to exclude the influence of the operator and of the anatomical site of collection. The influence of variability in the ages and genders of patients, along with laboratory parameters such as total cell number, cell viability, stem cell number, and other stromal vascular fraction cell subpopulations, has been compared. The results show that when the laboratory protocol is standardized, the variability of quantifiable cell parameters is widely statistically non-significant, meaning that we can take a further step toward standardized advanced cell therapy products.

7.
Stem Cell Res Ther ; 12(1): 373, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210363

RESUMO

BACKGROUND: Even though the manufacturing processes of the stromal vascular fraction for clinical use are performed in compliance with the good manufacturing practices applying to advanced therapy medicinal products, specifications related to stromal vascular fraction quality remain poorly defined. We analyzed stromal vascular fraction clinical batches from two independent good manufacturing practices-compliant manufacturing facilities, the Swiss Stem Cell Foundation (SSCF) and Marseille University Hospitals (AP-HM), with the goal of defining appropriate and harmonized release acceptance criteria. METHODS: This retrospective analysis reviewed the biological characteristics of 364 batches of clinical-grade stromal vascular fraction. Collected data included cell viability, recovery yield, cell subset distribution of stromal vascular fraction, and microbiological quality. RESULTS: Stromal vascular fraction from SSCF cohort demonstrated a higher viability (89.33% ± 4.30%) and recovery yield (2.54 × 105 ± 1.22 × 105 viable nucleated cells (VNCs) per mL of adipose tissue) than stromal vascular fraction from AP-HM (84.20% ± 5.96% and 2.25 × 105 ± 1.11 × 105 VNCs per mL). AP-HM batches were significantly less contaminated (95.71% of sterile batches versus 74.15% for SSCF batches). The cell subset distribution was significantly different (higher proportion of endothelial cells and lower proportion of leukocytes and pericytes in SSCF cohort). CONCLUSIONS: Both centers agreed that a good manufacturing practices-compliant stromal vascular fraction batch should exert a viability equal or superior to 80%, a minimum recovery yield of 1.50 × 105 VNCs per mL of adipose tissue, a proportion of adipose-derived stromal cells at least equal to 20%, and a proportion of leukocytes under 50%. In addition, a multiparameter gating strategy for stromal vascular fraction analysis is proposed.


Assuntos
Tecido Adiposo , Células Endoteliais , Sobrevivência Celular , Estudos Retrospectivos , Células Estromais
8.
Am Heart J ; 160(1): 58-64, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20598973

RESUMO

BACKGROUND: Recent studies report that intracoronary administration of autologous bone marrow mononucleated cells (BM-MNCs) may improve remodeling of the left ventricle after acute myocardial infarction (AMI). Subgroup analysis suggest that early treatment between days 4 and 7 after AMI is probably most effective; however, the optimal time point of intracoronary cell administration has never been addressed in clinical trials. Furthermore, reliable clinical predictors are lacking for identifying patients who are thought to have most benefit from cellular therapy. STUDY DESIGN: In a multicenter trial, 192 patients with AMI successfully treated by percutaneous coronary intervention (PCI) of the infarct-related artery will be randomized in a 1:1:1 pattern to 1 control and 2 BM-MNC treatment groups. The control group will be treated with state-of-the-art medical management. The treatment groups will receive intracoronary administration of autologous BM-MNC at 5 to 7 days or 3 to 4 weeks after the initial event, respectively. Left ventricular function as well as scar size, transmural extension, and regional wall motion score will be assessed by cardiac magnetic resonance (CMR) studies at baseline and after 4 and 12 months. METHODS: Fifty milliliters of bone marrow will be harvested by aspiration from the iliac crest and then carried by courier to a centralized cell processing facility. The mononucleated cell fraction will be isolated by density gradient centrifugation, washed, and resuspended in 10 mL of injection medium. The cells will be characterized by fluorescence-activated cell sorting analysis and tested for sterility and potency both "in vitro" and "in vivo." Bone marrow MNC will then be reinfused directly in the infarct-related coronary artery. END POINTS: The primary end point is the change in global left ventricular (LV) ejection fraction by CMR at 4 months as compared to baseline. Comparisons will then be made between each of the prespecified therapy subgroups (early and late after AMI) and the control group. Secondary end points include change in infarct size, change in regional myocardial thickness, and wall motion at 4 and 12 months compared to baseline. Infarct extension (size and transmural extension), time delay to PCI, and coronary flow characteristics after PCI will be assessed as potential predictors of LV remodeling and change after cell therapy. Major adverse cardiac events (MACE) (death, myocardial infarction, coronary revascularization, rehospitalization for heart failure) will be assessed at 4, 12, and 24 months and time to MACE will be estimated. DISCUSSION: With the present study, we aim to determine the optimal time point of intracoronary administration of autologous BM-MNC after AMI on LV remodeling.


Assuntos
Ventrículos do Coração/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Transplante de Células-Tronco/métodos , Função Ventricular Esquerda/fisiologia , Vasos Coronários , Seguimentos , Ventrículos do Coração/fisiopatologia , Humanos , Infusões Intra-Arteriais , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Índice de Gravidade de Doença , Volume Sistólico , Resultado do Tratamento , Remodelação Ventricular/fisiologia
9.
Plast Reconstr Surg Glob Open ; 8(1): e2550, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32095390

RESUMO

We aimed to assess whether our novel Nanofat grafting procedure improves skin quality while yielding a regenerative effect and whether this novel technique can also achieve a lifting effect. METHODS: Patients who requested nonsurgical facial rejuvenation were enrolled between June 2018 and December 2018. Fat was aspirated from the medial thigh, inner part of the knee, or lower abdomen regions. Following aspiration and flushing, microfat was obtained after washing with saline. This microfat was emulsified to obtain a Nanofat suspension, which was injected using a 25-G cannula into the subcutaneous layer at different facial sites. Images were obtained before and at 1, 3, and 6 months after facial rejuvenation. Patients were also administered a survey. Characterization of the isolated stromal vascular fraction (3 patients), and before/after biopsies were performed. RESULTS: Fifty patients were included (2 men and 48 women; mean age, 35-65 years; mean follow-up, 9 months). The clinical results were apparent between 2 and 4 weeks after injection, and improvements were continuously observed until 6 months postoperatively. All patients confirmed an improvement in skin quality. A lifting effect was also observed. The data confirm that the Nanofat procedure does not damage cells, maintaining cell viability, and number of adipose-derived stem cells. Biopsies showed an increased dermal cellularity, vascular density, and elastic and collagen fiber density. CONCLUSION: Facial rejuvenation with subcutaneous Nanofat injections appears to be an effective method, representing a skin rejuvenation effect by modifying the pattern of the dermis, although additional studies are necessary.

10.
J Transl Med ; 7: 78, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19737416

RESUMO

BACKGROUND: Main scope of the EU and FDA regulations is to establish a classification criterion for advanced therapy medicinal products (ATMP). Regulations require that ATMPs must be prepared under good manufacturing practice (GMP). We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration. METHODS: For the potency assay, cells were placed in the upper part of a modified Boyden chamber containing Endocult Basal Medium with supplements and transmigrated cells were scored. The invasion index was expressed as the ratio between the numbers of invading cells relative to cell migration through a control insert membrane. For endotoxins, we used a commercially available system based on the kinetic chromogenic LAL-test. Validation of sterility was performed by direct inoculation of TSB and FTM media with the cell product following Eu Ph 2.6.1 guideline. RESULTS AND DISCUSSION: The calculated MVD and endotoxin limit were 780x and 39 EU/ml respectively. The 1:10 and 1:100 dilutions were selected for the validation. For sterility, all the FTM cultures were positive after 3 days. For TSB cultures, Mycetes and B. subtilis were positive after 5 and 3 days respectively. The detection limit was 1-10 colonies. A total of four invasion assay were performed: the calculated invasion index was 28.89 +/- 16.82% (mean +/- SD). CONCLUSION: We have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration. Unlike pharmaceutical products, many stem-cell-based products may originate in hospitals where personnel are unfamiliar with the applicable regulations. As new ATMPs are developed, the regulatory framework is likely to evolve. Meanwhile, existing regulations provide an appropriate structure for ensuring the safety and efficacy of the next generation of ATMPs. Personnel must be adequately trained on relevant methods and their application to stem-cell-based products.


Assuntos
Células da Medula Óssea/fisiologia , Endotoxinas/metabolismo , Coração/fisiologia , Leucócitos Mononucleares/fisiologia , Manufaturas , Miocárdio/citologia , Regeneração/fisiologia , Bioensaio/métodos , Células da Medula Óssea/citologia , Movimento Celular/fisiologia , União Europeia , Humanos , Leucócitos Mononucleares/citologia , Manufaturas/microbiologia , Manufaturas/normas , Farmacopeias como Assunto/normas , Reprodutibilidade dos Testes , Esterilização/métodos , Esterilização/normas , Estados Unidos
11.
PLoS One ; 14(2): e0212192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753235

RESUMO

Adipose-derived stem cells (ASCs) are multipotent and immune-privileged mesenchymal cells, making them ideal candidates for therapeutic purposes to manage tendon disorders. Providing safe and regulated cell therapy products to patients requires adherence to good manufacturing practices. To this aim we investigated the in vitro tenogenic differentiation potential of ASCs using a chemically defined serum-free medium (SF) or a xenogenic-free human pooled platelet lysate medium (hPL) suitable for cell therapy and both supplemented with CTGF, TGFß-3, BMP-12 and ascorbic acid (AA) soluble factors. Human ASCs were isolated from 4 healthy donors and they were inducted to differentiate until 14 days in both hPL and SF tenogenic media (hPL-TENO and SF-TENO). Cell viability and immunophenotype profile were analysed to evaluate mesenchymal stem cell (MSC) characteristics in both xenogenic-free media. Moreover, the expression of stemness and tendon-related markers upon cell differentiation by RT-PCR, protein staining and cytofluorimetric analysis were also performed. Our results showed the two xenogenic-free media well support cell viability of ASCs and maintain their MSC nature as demonstrated by their typical immunophenototype profile and by the expression of NANOG, OCT4 and Ki67 genes. Moreover, both hPL-TENO and SF-TENO expressed significant high levels of the tendon-related genes SCX, COL1A1, COL3A1, COMP, MMP3 and MMP13 already at early time points in comparison to the respective controls. Significant up-regulations in scleraxis, collagen and tenomodulin proteins were also demonstrated at in both differentiated SF and hPL ASCs. In conclusion, we demonstrated firstly the feasibility of both serum and xenogenic-free media tested to culture ASCs moving forward the GMP-compliant approaches for clinical scale expansion of human MSCs needed for therapeutical application of stem cells. Moreover, a combination of CTGF, BMP-12, TGFß3 and AA factors strongly and rapidly induce human ASCs to differentiate into tenocyte-like cells.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura , Células-Tronco Mesenquimais/metabolismo , Tendões/metabolismo , Tecido Adiposo/citologia , Antígenos de Diferenciação/biossíntese , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Tendões/citologia
12.
Stem Cells Int ; 2019: 5901479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915125

RESUMO

Over the last few years, human microfragmented adipose tissue (MFAT), containing significant levels of mesenchymal stromal cells (MSCs) and obtained from fat lipoaspirate (LP) through a minimal manipulation in a closed system device, has been successfully used in aesthetic medicine as well as in orthopedic and general surgery. Interestingly, in orthopedic diseases, this ready-to-use adipose tissue cell derivative seems to have a prolonged time efficacy even upon a single shot injection into osteoarthritic tissues. Here, we investigated the long-term survival and content of MSCs as well the anti-inflammatory activity of LP and its derived MFAT in vitro, with the aim to better understand a possible in vivo mechanism of action. MFAT and LP specimens from 17 human donors were investigated side by side. During a long-term culture in serum-free medium, we found that the total cell number as well the MSC content in MFAT decreased more slowly if compared to those from LP specimens. The analysis of cytokines and growth factors secreted into the conditioned medium (CM) was similar in MFAT and LP during the first week of culture, but the total amount of cytokines secreted by LP decreased much more rapidly than those produced by MFAT during prolonged culture (up to 28 days). Similarly, the addition of MFAT-CM recovered at early (3-7 days) and late stage (14-28 days) of culture strongly inhibited inflammatory function of U937 monocyte cell line, whereas the anti-inflammatory activity of LP-CM was drastically reduced after only 7 days of culture. We conclude that MFAT is an effective preparation with a long-lasting anti-inflammatory activity probably mediated by a long-term survival of their MSC content that releases a combination of cytokines that affect several mechanisms involved in inflammation processes.

13.
J Transl Med ; 5: 55, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17974012

RESUMO

BACKGROUND: The stromal vascular fraction (SVF) is a heterogeneous cell population derived from the adipose tissue. There is still a lack of information concerning the characterization of the cell subpopulations constituting the SVF as well as its mesenchymal and haematopoietic potential. Furthermore there are great variations in its phenotypical characterization. METHODS: Composition of SVF was investigated by FACS analysis, cytological and "in vitro" assays. We studied CD34+ population by combining FACS with human CFC (colony-forming-cell haematopoietic assay). The endothelial fraction was investigated by quantifying the co-expression of specific markers (CD146, CD105, CD31 and UEA-1). Mesenchymal potential was assessed by CFU-F assay and cultured AT-MSC were characterized by a 5-color FACS analysis. The multipotent differentiation potential (osteogenic, adipogenic and chondrogenic) was investigated both at cellular and molecular level. RESULTS: We identified in the SVF two CD34+ populations with a marked difference in the intensity of antigen expression, the majority of the cells expressing CD34 at low intensity. Moreover, two CD146+ cell populations were clearly distinguishable in the SVF:a CD146 dim accounting for 9.9% of the total SVF cells and a CD146+ bright cell population accounting for about 39.3%. The frequency of CFC clones was comparable with the one reported for peripheral blood. Endothelial cells account for about 7.7% of the SVF cells. AT-MSC differenced in the osteogenic adipogenic and chondrogenic lineage. CONCLUSION: The SVF is not a homogeneous cell population, and its final composition could be influenced both by the flow cytometric technique analysis and the SVF extraction steps. The CFU-F frequency in the SVF was 1/4880, a value about seven times greater than the data reported for bone marrow. The antigenic profile of AT-MSC was comparable with bone-marrow derived MSC. AT-MSC were able to differentiate along the osteogenic adipogenic and chondrogenic lineages. The data here reported, further contribute to the characterization of SVF, a tissue providing an alternative as a source of MSC for clinical applications.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/irrigação sanguínea , Antígenos CD34/imunologia , Sequência de Bases , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/imunologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Swiss Med Wkly ; 142: w13632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22833405

RESUMO

BACKGROUND: Intracoronary injection of autologous bone marrow-derived mononucleated cells (BM-MNC) may improve LV function shortly after acute ST elevation myocardial infarction (STEMI), but little is known about the long-term durability of the treatment effect. METHODS: In a single-centre trial a total of 60 patients with acute anterior STEMI, successful reperfusion therapy and a left ventricular ejection fraction (LVEF) of <50% were screened for the study. 23 patients were actively treated with intracoronary infusion of BM-MNC within a median of 3 days. The open-label control group consisted of 19 patients who did not consent to undergo BM-MNC treatment but agreed to undergo regular clinical and echocardiographic follow-up for up to 5 years after AMI. RESULTS: Whereas at 4 months there was no significant difference between the increase in LVEF in the BM-MNC group and the control group (+7.0%, 95%CI 3.6; 10.4) vs. +3.9%, 95%CI -2.1; 10), the absolute increase at 5 years remained stable in the BM-MNC but not in the control group (+7.95%, 95%CI 3.5; 12.4 vs. -0.5%, 95%CI -5.4; 4.4; p for interaction between groups = 0.035). DISCUSSION: In this single-centre, open-labelled study, intracoronary administration of BM-MNC is feasible and safe in the short term. It is also associated with sustained improvement of left ventricular function in patients with acute myocardial infarction, encouraging phase III studies to examine the potential BM-MNC effect on clinical outcome.


Assuntos
Transplante de Medula Óssea , Leucócitos Mononucleares/transplante , Infarto do Miocárdio/terapia , Função Ventricular Esquerda , Idoso , Ecocardiografia , Eletrocardiografia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/fisiopatologia , Resultado do Tratamento
16.
Investig Genet ; 3(1): 25, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23211019

RESUMO

BACKGROUND: Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim's epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim's DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim's fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim's fraction, and then digest the residual victim's DNA with a nuclease. METHODS: The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. RESULTS: For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. CONCLUSIONS: In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods.

17.
J Cardiovasc Transl Res ; 4(2): 211-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21308491

RESUMO

Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.


Assuntos
Doença da Artéria Coronariana/imunologia , Citometria de Fluxo , Imunofenotipagem/métodos , Mediadores da Inflamação/sangue , Monócitos/imunologia , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Angiografia Coronária , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
J Cardiovasc Transl Res ; 4(2): 200-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21327755

RESUMO

Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Multipotentes/fisiologia , Tecido Adiposo/irrigação sanguínea , Adulto , Células-Tronco Adultas/metabolismo , Biomarcadores/metabolismo , Separação Celular/métodos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Terminologia como Assunto
19.
J Cardiovasc Transl Res ; 4(2): 192-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21052883

RESUMO

The 2010 edition of the Lugano Stem Cell Meeting, under the auspices of the Swiss center of excellence in cardiovascular diseases "Cardiocentro Ticino" and the Swiss Stem Cell Foundation, offered an update on clinical, translational, and biotechnological advances in regenerative science and medicine pertinent to cardiovascular applications. Highlights from the international forum ranged from innate mechanisms of heart repair, safety, and efficacy of ongoing and completed clinical trials, novel generations of stem cell biologics, bioengineered platforms, and regulatory processes. In the emerging era of regenerative medicine, accelerating the critical path from discovery to product development will require integrated multidisciplinary teams to ensure timely translation of new knowledge into validated algorithms for practice adoption.


Assuntos
Cardiopatias/cirurgia , Miocárdio/patologia , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Distinções e Prêmios , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Regeneração , Medicina Regenerativa/legislação & jurisprudência , Transplante de Células-Tronco/legislação & jurisprudência , Resultado do Tratamento
20.
Am J Transl Res ; 2(3): 285-95, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20589167

RESUMO

Bone marrow derived stem cells administered after minimal manipulation represent an important cell source for cell-based therapies. Clinical trial results, have revealed both safety and efficacy of the cell reinfusion procedure in many cardiovascular diseases. Many of these early clinical trials were performed in a period before the entry into force of the US and European regulation on cell-based therapies. As a result, conflicting data have been generated on the effectiveness of those therapies in certain conditions as acute myocardial infarction. As more academic medical centers and private companies move toward exploiting the full potential of cell-based medicinal products, needs arise for the development of the infrastructure necessary to support these investigations. This review describes the regulatory environment surrounding the production of cell based medicinal products and give practical aspects for cell isolation, characterization, production following Good Manufacturing Practice, focusing on the activities associated with the investigational new drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA