Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Dairy Sci ; 106(4): 2963-2979, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797189

RESUMO

Automatic respiration monitoring of dairy cows in modern farming not only helps to reduce manual labor but also increases the automation of health assessment. It is common for cows to congregate on farms, which poses a challenge for manual observation of cow status because they physically occlude each other. In this study, we propose a method that can monitor the respiratory behavior of multiple cows. Initially, 4,000 manually labeled images were used to fine-tune the YOLACT (You Only Look At CoefficienTs) model for recognition and segmentation of multiple cows. Respiratory behavior in the resting state could better reflect their health status. Then, the specific resting states (lying resting, standing resting) of different cows were identified by fusing the convolutional neural network and bidirectional long and short-term memory algorithms. Finally, the corresponding detection algorithms (lying and standing resting) were used for respiratory behavior monitoring. The test results of 60 videos containing different interference factors indicated that the accuracy of respiratory behavior monitoring of multiple cows in 54 videos was >90.00%, and that of 4 videos was 100.00%. The average accuracy of the proposed method was 93.56%, and the mean absolute error and root mean square error were 3.42 and 3.74, respectively. Furthermore, the effectiveness of the method was analyzed for simultaneous monitoring of respiratory behavior of multiple cows under movement, occlusion disturbance, and behavioral changes. It was feasible to monitor the respiratory behavior of multiple cows based on the proposed algorithm. This study could provide an a priori technical basis for respiratory behavior monitoring and automatic diagnosis of respiratory-related diseases of multiple dairy cows based on biomedical engineering technology. In addition, it may stimulate researchers to develop robots with health-sensing functions that are oriented toward precision livestock farming.


Assuntos
Comportamento Animal , Aprendizado Profundo , Feminino , Bovinos , Animais , Indústria de Laticínios/métodos , Comportamento Alimentar , Computadores
2.
Int J Obes (Lond) ; 45(12): 2608-2616, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34433905

RESUMO

BACKGROUND: Obesity is associated with brain intrinsic functional reorganization. However, little is known about the BMI-related interhemispheric functional connectivity (IHFC) alterations, and their link with executive function in young healthy adults. METHODS: We examined voxel-mirrored homotopic connectivity (VMHC) patterns in 417 young adults from the Human Connectome Project. Brain regions with significant association between BMI and VMHC were identified using multiple linear regression. Results from these analyses were then used to determine regions for seed-voxel FC analysis, and multiple linear regression was used to explore the brain regions showing significant association between BMI and FC. The correlations between BMI-related executive function measurements and VMHC, as well as seed-voxel FC, were further examined. RESULTS: BMI was negatively associated with scores of Dimensional Change Card Sort Test (DCST) assessing cognitive flexibility (r = -0.14, p = 0.006) and with VMHC of bilateral inferior parietal lobule, insula and dorsal caudate. The dorsal caudate emerged as a nexus for BMI-related findings: greater BMI was associated with greater FC between caudate and hippocampus and lower FC between caudate and several prefrontal nodes (right inferior frontal gyrus, anterior cingulate cortex, and middle frontal gyrus). The FC between right caudate and left hippocampus was negatively associated with scores of DCST (r = -0.15, p = 0.0018). CONCLUSIONS: Higher BMI is associated with poorer cognitive flexibility performance and IHFC in an extensive set of brain regions implicated in cognitive control. Larger BMI was associated with higher caudate-medial temporal lobe FC and lower caudate-dorsolateral prefrontal cortex FC. These findings may have relevance for executive function associated with weight gain among otherwise healthy young adults.


Assuntos
Índice de Massa Corporal , Cognição/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiopatologia , Lobo Temporal/fisiopatologia , Adulto , Conectoma , Córtex Pré-Frontal Dorsolateral/metabolismo , Feminino , Humanos , Masculino , Lobo Temporal/metabolismo
3.
Front Aging Neurosci ; 12: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161532

RESUMO

Age-related alterations of functional brain networks contribute to cognitive decline. Current theories indicate that age-related intrinsic brain functional reorganization may be a critical marker of cognitive aging. Yet, little is known about how intrinsic interhemispheric functional connectivity changes with age in adults, and how this relates to critical executive functions. To address this, we examined voxel-mirrored homotopic connectivity (VMHC), a metric that quantifies interhemispheric communication, in 93 healthy volunteers (age range: 19-85) with executive function assessment using the Delis-Kaplan Executive Function System (D-KEFS) scales. Resting functional MRI data were analyzed to assess VMHC, and then a multiple linear regression model was employed to evaluate the relationship between age and the whole-brain VMHC. We observed age-related reductions in VMHC of ventromedial prefrontal cortex (vmPFC) and hippocampus in the medial temporal lobe subsystem, dorsal anterior cingulate cortex and insula in salience network, and inferior parietal lobule in frontoparietal control network. Performance on the color-word inhibition task was associated with VMHC of vmPFC and insula, and VMHC of vmPFC mediated the relationship between age and CWIT inhibition reaction times. The percent ratio of correct design scores in design fluency test correlated positively with VMHC of the inferior parietal lobule. The current study suggests that brain interhemispheric functional alterations may be a promising new avenue for understanding age-related cognitive decline.

4.
Brain Imaging Behav ; 11(1): 264-277, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26860835

RESUMO

Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.


Assuntos
Encéfalo/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Fome/fisiologia , Inibição Psicológica , Adulto , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Função Executiva/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Descanso , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA