Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 19(2): 326-354, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35678199

RESUMO

Fluoropolymers are a distinct class of per- and polyfluoroalkyl substances (PFAS), high molecular weight (MW) polymers with fluorine attached to their carbon-only backbone. Fluoropolymers possess a unique combination of properties and unmatched functional performance critical to the products and manufacturing processes they enable and are irreplaceable in many uses. Fluoropolymers have documented safety profiles; are thermally, biologically, and chemically stable, negligibly soluble in water, nonmobile, nonbioavailable, nonbioaccumulative, and nontoxic. Although fluoropolymers fit the PFAS structural definition, they have very different physical, chemical, environmental, and toxicological properties when compared with other PFAS. This study describes the composition, uses, performance properties, and functionalities of 14 fluoropolymers, including fluoroplastics and fluoroelastomers, and presents data to demonstrate that they satisfy the widely accepted polymer hazard assessment criteria to be considered polymers of low concern (PLC). The PLC criteria include physicochemical properties, such as molecular weight, which determine bioavailability and warn of potential hazard. Fluoropolymers are insoluble (e.g., water, octanol) solids too large to migrate into the cell membrane making them nonbioavailable, and therefore, of low concern from a human and environmental health standpoint. Further, the study results demonstrate that fluoropolymers are a distinct and different group of PFAS and should not be grouped with other PFAS for hazard assessment or regulatory purposes. When combined with an earlier publication by Henry et al., this study demonstrates that commercial fluoropolymers are available from the seven participating companies that meet the criteria to be considered PLC, which represent approximately 96% of the global commercial fluoropolymer market. Integr Environ Assess Manag 2023;19:326-354. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Polímeros de Fluorcarboneto , Fluorocarbonos , Humanos , Polímeros de Fluorcarboneto/toxicidade , Polímeros , Ecotoxicologia/métodos , Saúde Ambiental , Água , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Medição de Risco/métodos
2.
Sci Total Environ ; 723: 138060, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32217394

RESUMO

Extensive measurements of equivalent black carbon (EBC) aerosol mass concentration at fifteen stations of India Meteorological Department (IMD) BC observation network during the period 2016-2018 are used to study the spatial and temporal heterogeneity over India. The sampling sites represent different geographical region of India. Spatial distribution shows higher values of EBC over stations of north India and IGP. Highest annual mean EBC mass concentration during study period was reported at two mega cities New Delhi (13,575 ± 8401 ng/m3) followed by Kolkata (12,082 ± 6850 ng/m3) whereas lowest mean concentration was at Ranichauri (1737 ± 884 ng/m3) followed by Bhuj (2021 ± 1471 ng/m3). Stations located in coastal region of south India reported low concentration of EBC. In order to find out the quantitative contribution of biomass burning (EBCBB) and fossil fuel (EBCFF) in total mass concentration of EBC, source apportionment study has been carried out using Aethalometer model. The EBCFF is the dominant contributor to EBC mass concentration at all the sites in every season, while the highest seasonal biomass burning mass contribution (37%) was observed in the winter at a background site Ranichauri. Maximum concentration of EBCBB was observed at Srinagar (2671 ng/m3) where as EBCFF was maximum in Delhi (11,074 ng/m3). Seasonal and diurnal variation studies have also been carried out for all the stations. The EBC mass concentrations exhibited strong seasonality, with the highest values occurring in postmonsoon/winter and the lowest in monsoon season. The higher EBC concentration in postmonsoon/winter seasons was attributed to the increased use of fuel in seasonal emission sources, domestic heating and stagnant meteorological conditions, whereas the low levels in monsoon season were related to the precipitation scavenging. Maximum concentration of EBC (22,409 ± 10,510 ng/m3) was observed in winter season over Kolkata. Our study finds high spatial heterogeneity in EBC concentrations across the study area.

3.
Environ Sci Pollut Res Int ; 25(25): 24726-24745, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29923051

RESUMO

The Indo-Gangetic Basin (IGB) experiences one of the highest aerosol loading over the globe with pronounced inter-/intra-seasonal variability. Four-year (January 2011-December 2014) continuous MICROTOPS-II sun-photometer measurements at Varanasi, central Ganges valley, provide an opportunity to investigate the aerosol physical and optical properties and their variability. A large variation in aerosol optical depth (AOD: from 0.23 to 1.89, mean of 0.82 ± 0.31) and Ångström exponent (AE: from 0.19 to 1.44, mean of 0.96 ± 0.27) is observed, indicating a highly turbid atmospheric environment with significant heterogeneity in aerosol sources, types and optical properties. The highest seasonal means of both AOD and AE are observed in the post-monsoon (October-November) season (0.95 ± 0.31 for AOD and 1.16 ± 0.14 for AE) followed by winter (December, January, February; 0.97 ± 0.34 for AOD and 1.09 ± 0.20 for AE) and are mainly attributed to the accumulation of aerosols from urban and biomass/crop residue burning emissions within a shallow boundary layer. In contrast, during the pre-monsoon and monsoon seasons, the aerosols are mostly coming from natural origin (desert and mineral dust) mixed with pollution in several cases. The spectral dependence of AE, the aerosol "curvature" effect and other graphical techniques are used for the identification of the aerosol types and their mixing processes in the atmosphere. Furthermore, the aerosol source-apportionment assessment using the weighted potential source contribution function (WPSCF) analysis reveals the different aerosol types, emission sources and transport pathways.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Atmosfera/química , Biomassa , Poeira/análise , Meio Ambiente , Índia , Fotometria , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA