Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 283(49): 33919-26, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18820257

RESUMO

Studies of the interaction between Bikunin proteins, tumor necrosis factor-stimulated gene-6 protein (TSG-6), and glycosaminoglycans have revealed a unique catalytic activity where TSG-6/heavy chain 2 transfer heavy chain subunits between glycosaminoglycan chains. The activity is mediated by TSG-6/heavy chain 2 and involves a transient SDS stable interaction between TSG-6 and the heavy chain to be transferred. The focus of this study was to characterize the molecular structure of this cross-link to gain further insight into the catalytic mechanism. The result showed that the C-terminal Asp residue of the heavy chains forms an ester bond to Ser(28) beta-carbon of TSG-6 suggesting that this residue plays a role during catalysis.


Assuntos
Moléculas de Adesão Celular/fisiologia , Glicosaminoglicanos/química , Serina/química , Carbono/química , Catálise , Moléculas de Adesão Celular/química , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Espectrometria de Massas/métodos , Conformação Molecular , Peptídeos/química , Ligação Proteica , Proteínas Recombinantes/química , Dodecilsulfato de Sódio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Biol Chem ; 283(27): 18530-7, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18448433

RESUMO

Tumor necrosis factor-stimulated gene-6 protein (TSG-6) is involved in the transfer of heavy chains (HCs) from inter-alpha-inhibitor (IalphaI), pre-alpha-inhibitor, and as shown here HC2.bikunin to hyaluronan through the formation of covalent HC.TSG-6 intermediates. In contrast to IalphaI and HC2.bikunin, pre-alpha-inhibitor does not form a covalent complex in vitro using purified proteins but needs the presence of another factor (Rugg, M. S., Willis, A. C., Mukhopadhyay, D., Hascall, V. C., Fries, E., Fülöp, C., Milner, C. M., and Day, A. J. (2005) J. Biol. Chem. 280, 25674-25686). In the present study we purified the required component from human plasma and identified it as HC2. Proteins containing HC2 including IalphaI, HC2.bikunin, and free HC2 promoted the formation of HC3.TSG-6 and subsequently HC3.hyaluronan complexes. HC1 or HC3 did not possess this activity. The presented data reveal that both HC2 and TSG-6 are required for the transesterification reactions to occur.


Assuntos
alfa-Globulinas/química , Moléculas de Adesão Celular/química , Ácido Hialurônico/química , Complexos Multiproteicos/química , alfa-Globulinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Masculino , Complexos Multiproteicos/metabolismo
3.
Biochemistry ; 45(24): 7661-8, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16768462

RESUMO

IalphaI and TSG-6 interact to form a covalent bond between the C-terminal Asp alpha-carbon of an IalphaI heavy chain (HC) and an unknown component of TSG-6. This event disrupts the protein-glycosaminoglycan-protein (PGP) cross-link and dissociates IalphaI. In simple terms the interaction involves 5 components: (i) the IalphaI HCs, (ii) bikunin, (iii) chondroitin sulfate chain, (iv) TSG-6, and (v) divalent cations. To understand the molecular mechanism of complex formation, the effect of these were separately examined. The data show that although the mature covalent cross-link between the HCs and TSG-6 only involves the C-terminal Asp residue, the native fold of both IalphaI and TSG-6 was essential for the reaction to occur. Similarly, complex formation was prevented if the chondroitin sulfate chain was cleaved, releasing bikunin but maintaining the HC1 and HC2 PGP cross-links. In contrast, releasing the majority of the bikunin protein moiety by limited proteolysis did not prevent complex formation. An analysis of the divalent-cation requirements revealed two distinct interactions between IalphaI and TSG-6: (i) a noncovalent manganese, magnesium, or calcium-independent interaction between TSG-6 and the chondroitin sulfate chain (Kd 180 nM) and (ii) a covalent manganese, magnesium, or calcium-dependent interaction generating HC1 x TSG-6, HC2 x TSG-6, and high molecular weight (HMW) IalphaI. Significantly, both free TSG-6 and HC x TSG-6 complexes were able to bind the chondroitin sulfate chain suggesting that the sites on TSG-6 were distinct. On the basis of these findings, we propose a two-step reaction mechanism involving two putative binding sites. Initially, a cation-independent interaction between TSG-6 and the chondroitin sulfate chain is formed at site 1. Subsequently, a cation-dependent transesterification occurs, generating the covalent HC x TSG-6 cross-link at another site, site 2.


Assuntos
alfa-Globulinas/metabolismo , Moléculas de Adesão Celular/metabolismo , alfa-Globulinas/química , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Moléculas de Adesão Celular/genética , Quelantes/farmacologia , Sulfatos de Condroitina/metabolismo , Ácido Edético/farmacologia , Esterificação , Ésteres/metabolismo , Cinética , Magnésio/metabolismo , Manganês/metabolismo , Glicoproteínas de Membrana/metabolismo , Peso Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ressonância de Plasmônio de Superfície , Inibidor da Tripsina de Soja de Kunitz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA