Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pain ; 11: 66, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26498117

RESUMO

BACKGROUND: Molecular mediators influencing the transition from acute to persistent musculoskeletal pain following common stress exposures such as motor vehicle collision (MVC) remain poorly understood. In this exploratory, proof of concept study, we compared circulating microRNA (miRNA) expression profiles in the early aftermath of MVC among individuals who did and did not subsequently develop persistent pain. Blood RNA samples were obtained from African American individuals (n = 53) who presented to the emergency department after MVC and were discharged to home after evaluation. The presence or absence of severe pain in the axial region, the most common and morbid region in which post-MVC pain occurs, was assessed 6 weeks following MVC via standardized questionnaire. miRNA expression was determined using miRNA-sequencing; nonparametric analyses were used to compare miRNA expression levels among individuals with and without persistent pain. RESULTS: Thirty-two mature miRNA were differentially expressed (p < 0.05) in those with and without severe axial pain at 6 weeks. miR-135a-5p, a regulator of the serotonin receptor that is known to be stress-responsive, differed most significantly between groups (p = 3 × 10(-4)). This miRNA, and miR-3613-3p (p = 0.001) survived correction for multiple testing (FDR = 0.15) in this small sample. Interestingly, differentially expressed miRNA were enriched for X chromosome location. In secondary analyses, the eight X chromosome miRNA were (a) more significantly associated with axial pain in women than men, (b) expressed more highly in the peripheral blood of women than men, and (c) predicted in pathway analyses (DIANA miRPath v 2.0) to regulate neuronal and neuroendocrine pathways previously implicated in various pain pathologies. CONCLUSIONS: These results show that circulating miRNA predict persistent severe axial pain after MVC and suggest that they may be involved in the pathogenesis of post-traumatic musculoskeletal pain. However, further studies are needed to determine if these miRNA play a direct causal role.


Assuntos
Acidentes de Trânsito , MicroRNAs/sangue , Dor/genética , Adulto , Cromossomos Humanos X , Estudos de Coortes , Feminino , Humanos , Masculino , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/fisiologia , Pessoa de Meia-Idade , Veículos Automotores , Dor/sangue , Dor/etiologia , Estudos Prospectivos , Análise de Sequência de RNA , Fatores Sexuais , Adulto Jovem
2.
J Mol Biol ; 385(5): 1643-54, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19101564

RESUMO

The flavivirus 2'-O-nucleoside N-terminal RNA methyltransferase (MTase) enzyme is responsible for methylating the viral RNA cap structure. To increase our understanding of the mechanism of viral RNA cap binding we performed a detailed structural and biochemical characterization of the guanosine cap-binding pocket of the dengue (DEN) and yellow fever (YF) virus MTase enzymes. We solved an improved 2.1 A resolution crystal structure of DEN2 Mtase, new 1.5 A resolution crystal structures of the YF virus MTase domain in apo form, and a new 1.45 A structure in complex with guanosine triphosphate and RNA cap analog. Our structures clarify the previously reported DEN MTase structure, suggest novel protein-cap interactions, and provide a detailed view of guanine specificity. Furthermore, the structures of the DEN and YF proteins are essentially identical, indicating a large degree of structural conservation amongst the flavivirus MTases. Guanosine triphosphate analog competition assays and mutagenesis analysis, performed to analyze the biochemical characteristics of cap binding, determined that the major interaction points are (i) guanine ring via pi-pi stacking with Phe24, N1 hydrogen interaction with the Leu19 backbone carbonyl via a water bridge, and C2 amine interaction with Leu16 and Leu19 backbone carbonyls; (ii) ribose 2' hydroxyl interaction with Lys13 and Asn17; and (iii) alpha-phosphate interactions with Lys28 and Ser215. Based on our mutational and analog studies, the guanine ring and alpha-phosphate interactions provide most of the energy for cap binding, while the combination of the water bridge between the guanine N1 and Leu19 carbonyl and the hydrogen bonds between the C2 amine and Leu16/Leu19 carbonyl groups provide for specific guanine recognition. A detailed model of how the flavivirus MTase protein binds RNA cap structures is presented.


Assuntos
Flavivirus/enzimologia , Modelos Moleculares , Capuzes de RNA/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA