Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Horiz ; 11(18): 4256-4274, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38958665

RESUMO

With recent advancements in technology, the emission of electromagnetic radiation has emerged as a significant issue due to electromagnetic interferences. These interferences include various undesirable emissions that can degrade the performance of equipment and structures. If left unresolved, these complications can create extra damage to the security operations and communication systems of numerous electronic devices. Various studies have been conducted to address these issues. In recent years, electrically conductive polypyrrole has gained a unique position because of its many advantageous properties. The absorption of microwaves and the electromagnetic interference (EMI) shielding characteristics of electrically conductive polypyrrole can be described in relation to its great electrical conductivity with strong relaxation and polarization effects due to the existence of strong bonds or localized charges. In the present review, advancements in electromagnetic interference shielding with conjugated polypyrrole and its nanocomposites with metal oxides are discussed and correlated with various properties such as dielectric properties, magnetic properties, electrical conductivity, and microwave adsorption properties. This review also focuses on identifying the most suitable polypyrrole-based metal oxide nanocomposites for electromagnetic interference shielding applications.

2.
Heliyon ; 10(13): e33643, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027581

RESUMO

Recent advancements in polymer science and engineering underscore the importance of creating sophisticated soft materials characterized by well-defined structures and adaptable properties to meet the demands of emerging applications. The primary objective of polymeric composite technology is to enhance the functional utility of materials for high-end purposes. Both the inherent qualities of the materials and the intricacies of the synthesis process play pivotal roles in advancing their properties and expanding their potential applications. Polypyrrole (PPy)-based composites, owing to their distinctive properties, hold great appeal for a variety of applications. Despite the limitations of PPy in its pure form, these constraints can be effectively overcome through hybridization with other materials. This comprehensive review thoroughly explores the existing literature on PPy and PPy-based composites, providing in-depth insights into their synthesis, properties, and applications. Special attention is given to the advantages of intrinsically conducting polymers (ICPs) and PPy in comparison to other ICPs. The impact of doping anions, additives, and oxidants on the properties of PPy is also thoroughly examined. By delving into these aspects, this overview aims to inspire researchers to delve into the realm of PPy-based composites, encouraging them to explore new avenues for flexible technology applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA