Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(17): 3619-3631.e13, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595565

RESUMO

During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.


Assuntos
Viroses , Humanos , Células Eucarióticas , Células Procarióticas , Trifosfato de Adenosina , N-Glicosil Hidrolases
2.
Cell ; 186(9): 1863-1876.e16, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37030292

RESUMO

Over the past few years, numerous anti-phage defense systems have been discovered in bacteria. Although the mechanism of defense for some of these systems is understood, a major unanswered question is how these systems sense phage infection. To systematically address this question, we isolated 177 phage mutants that escape 15 different defense systems. In many cases, these escaper phages were mutated in the gene sensed by the defense system, enabling us to map the phage determinants that confer sensitivity to bacterial immunity. Our data identify specificity determinants of diverse retron systems and reveal phage-encoded triggers for multiple abortive infection systems. We find general themes in phage sensing and demonstrate that mechanistically diverse systems have converged to sense either the core replication machinery of the phage, phage structural components, or host takeover mechanisms. Combining our data with previous findings, we formulate key principles on how bacterial immune systems sense phage invaders.


Assuntos
Bactérias , Bacteriófagos , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Sistemas CRISPR-Cas , Proteínas Virais/metabolismo , Mutação , Fenômenos Fisiológicos Bacterianos
3.
Cell ; 186(5): 987-998.e15, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764290

RESUMO

RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Microscopia Crioeletrônica/métodos , ATPases Associadas a Diversas Atividades Celulares , Trifosfato de Adenosina , Adenosina Desaminase/metabolismo
4.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644530

RESUMO

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Assuntos
Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , CMP Cíclico/metabolismo , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Burkholderia/enzimologia , CMP Cíclico/química , Ciclização , Escherichia coli/enzimologia , Modelos Moleculares , Mutação/genética , Nucleotídeos Cíclicos/química , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
5.
Cell ; 183(6): 1551-1561.e12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157039

RESUMO

Retrons are bacterial genetic elements comprised of a reverse transcriptase (RT) and a non-coding RNA (ncRNA). The RT uses the ncRNA as template, generating a chimeric RNA/DNA molecule in which the RNA and DNA components are covalently linked. Although retrons were discovered three decades ago, their function remained unknown. We report that retrons function as anti-phage defense systems. The defensive unit is composed of three components: the RT, the ncRNA, and an effector protein. We examined multiple retron systems and show that they confer defense against a broad range of phages via abortive infection. Focusing on retron Ec48, we show evidence that it "guards" RecBCD, a complex with central anti-phage functions in bacteria. Inhibition of RecBCD by phage proteins activates the retron, leading to abortive infection and cell death. Thus, the Ec48 retron forms a second line of defense that is triggered if the first lines of defense have collapsed.


Assuntos
Bactérias/genética , Bactérias/imunologia , Bacteriófagos/fisiologia , RNA não Traduzido/genética , DNA Polimerase Dirigida por RNA/genética , Bactérias/virologia , Ilhas de CpG/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Filogenia
6.
Cell ; 172(6): 1260-1270, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522746

RESUMO

Bacteriophages, discovered about a century ago, have been pivotal as models for understanding the fundamental principles of molecular biology. While interest in phage biology declined after the phage "golden era," key recent developments, including advances in phage genomics, microscopy, and the discovery of the CRISPR-Cas anti-phage defense system, have sparked a renaissance in phage research in the past decade. This review highlights recently discovered unexpected complexities in phage biology, describes a new arsenal of phage genes that help them overcome bacterial defenses, and discusses advances toward documentation of the phage biodiversity on a global scale.


Assuntos
Bacteriófagos/genética , Biologia/tendências , Genoma Viral/genética , Genômica/tendências , Biologia Molecular/tendências , Bactérias/genética , Bactérias/virologia , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas , Variação Genética , Genômica/métodos , Lisogenia/genética , Modelos Genéticos
8.
Cell ; 168(1-2): 13-15, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086086

RESUMO

Extracellular membrane vesicles from bacteria are now shown to transfer phage receptors from susceptible to resistant cells, thus making them transiently sensitive to phage infection (Tzipilevich et al.).


Assuntos
Bacteriófagos
9.
Nature ; 631(8022): 850-856, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020165

RESUMO

Several immune pathways in humans conjugate ubiquitin-like proteins to virus and host molecules as a means of antiviral defence1-5. Here we studied an antiphage defence system in bacteria, comprising a ubiquitin-like protein, ubiquitin-conjugating enzymes E1 and E2, and a deubiquitinase. We show that during phage infection, this system specifically conjugates the ubiquitin-like protein to the phage central tail fibre, a protein at the tip of the tail that is essential for tail assembly as well as for recognition of the target host receptor. Following infection, cells encoding this defence system release a mixture of partially assembled, tailless phage particles and fully assembled phages in which the central tail fibre is obstructed by the covalently attached ubiquitin-like protein. These phages show severely impaired infectivity, explaining how the defence system protects the bacterial population from the spread of phage infection. Our findings demonstrate that conjugation of ubiquitin-like proteins is an antiviral strategy conserved across the tree of life.


Assuntos
Enzimas Desubiquitinantes , Enzimas de Conjugação de Ubiquitina , Ubiquitina , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Bacteriófagos/fisiologia , Bacteriófagos/metabolismo , Ubiquitinas/metabolismo , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/química , Escherichia coli/virologia , Escherichia coli/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo
10.
Nature ; 627(8003): 431-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383786

RESUMO

To survive bacteriophage (phage) infections, bacteria developed numerous anti-phage defence systems1-7. Some of them (for example, type III CRISPR-Cas, CBASS, Pycsar and Thoeris) consist of two modules: a sensor responsible for infection recognition and an effector that stops viral replication by destroying key cellular components8-12. In the Thoeris system, a Toll/interleukin-1 receptor (TIR)-domain protein, ThsB, acts as a sensor that synthesizes an isomer of cyclic ADP ribose, 1''-3' glycocyclic ADP ribose (gcADPR), which is bound in the Smf/DprA-LOG (SLOG) domain of the ThsA effector and activates the silent information regulator 2 (SIR2)-domain-mediated hydrolysis of a key cell metabolite, NAD+ (refs. 12-14). Although the structure of ThsA has been solved15, the ThsA activation mechanism remained incompletely understood. Here we show that 1''-3' gcADPR, synthesized in vitro by the dimeric ThsB' protein, binds to the ThsA SLOG domain, thereby activating ThsA by triggering helical filament assembly of ThsA tetramers. The cryogenic electron microscopy (cryo-EM) structure of activated ThsA revealed that filament assembly stabilizes the active conformation of the ThsA SIR2 domain, enabling rapid NAD+ depletion. Furthermore, we demonstrate that filament formation enables a switch-like response of ThsA to the 1''-3' gcADPR signal.


Assuntos
Bactérias , Proteínas de Bactérias , Bacteriófagos , Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/biossíntese , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Hidrólise , NAD/metabolismo , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
11.
Nature ; 625(7994): 360-365, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992757

RESUMO

Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation1-5. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes1,6,7, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA. Gabija protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage defence complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the complex and create a 4:4 GajA-GajB assembly (hereafter, GajAB) that is essential for phage resistance in vivo. We show that a phage-encoded protein, Gabija anti-defence 1 (Gad1), directly binds to the Gabija GajAB complex and inactivates defence. A cryo-EM structure of the virally inhibited state shows that Gad1 forms an octameric web that encases the GajAB complex and inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly of the Gabija anti-phage defence complex and define a unique mechanism of viral immune evasion.


Assuntos
Bactérias , Proteínas de Bactérias , Bacteriófagos , Evasão da Resposta Imune , Multimerização Proteica , Bactérias/genética , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/genética , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Desoxirribonucleases/ultraestrutura , DNA Viral/química , DNA Viral/metabolismo , DNA Viral/ultraestrutura
12.
Nature ; 625(7994): 352-359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992756

RESUMO

It was recently shown that bacteria use, apart from CRISPR-Cas and restriction systems, a considerable diversity of phage resistance systems1-4, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes. Homologues of these anti-defence proteins are found in hundreds of phages that infect taxonomically diverse bacterial species. We show that the anti-Gabija protein Gad1 blocks the ability of the Gabija defence complex to cleave phage-derived DNA. Our data further reveal that the anti-Thoeris protein Tad2 is a 'sponge' that sequesters the immune signalling molecules produced by Thoeris TIR-domain proteins in response to phage infection. Our results demonstrate that phages encode an arsenal of anti-defence proteins that can disable a variety of bacterial defence mechanisms.


Assuntos
Fagos Bacilares , Bactérias , Proteínas Virais , Fagos Bacilares/classificação , Fagos Bacilares/genética , Fagos Bacilares/imunologia , Fagos Bacilares/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Mol Cell ; 81(24): 5039-5051.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784509

RESUMO

Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded ß-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/patogenicidade , Membrana Celular/virologia , Escherichia coli/virologia , Yersinia/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/imunologia , Morte Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Ligantes , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Transdução de Sinais , Relação Estrutura-Atividade , Yersinia/genética
14.
Annu Rev Biochem ; 82: 237-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23495939

RESUMO

Effective clearance of an infection requires that the immune system rapidly detects and neutralizes invading parasites while strictly avoiding self-antigens that would result in autoimmunity. The cellular machinery and complex signaling pathways that coordinate an effective immune response have generally been considered properties of the eukaryotic immune system. However, a surprisingly sophisticated adaptive immune system that relies on small RNAs for sequence-specific targeting of foreign nucleic acids was recently discovered in bacteria and archaea. Molecular vaccination in prokaryotes is achieved by integrating short fragments of foreign nucleic acids into a repetitive locus in the host chromosome known as a CRISPR (clustered regularly interspaced short palindromic repeat). Here we review the mechanisms of CRISPR-mediated immunity and discuss the ecological and evolutionary implications of these adaptive defense systems.


Assuntos
Imunidade Adaptativa/genética , Archaea/imunologia , Bactérias/imunologia , Sequências Repetidas Invertidas/genética , RNA Arqueal/genética , RNA Bacteriano/genética , Transdução de Sinais/genética , Archaea/genética , Bactérias/genética , Sequências Repetidas Invertidas/imunologia , RNA Arqueal/imunologia , RNA Bacteriano/imunologia , Transdução de Sinais/imunologia
15.
Nature ; 605(7910): 522-526, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395152

RESUMO

The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation1,2. Phages use several strategies to defeat host CRISPR and restriction-modification systems3-10, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity. Using a biochemical screen of 57 phages in Escherichia coli and Bacillus subtilis, we discover Acb1 from phage T4 and Apyc1 from phage SBSphiJ as founding members of distinct families of immune evasion proteins. Crystal structures of Acb1 in complex with 3'3'-cyclic GMP-AMP define a mechanism of metal-independent hydrolysis 3' of adenosine bases, enabling broad recognition and degradation of cyclic dinucleotide and trinucleotide CBASS signals. Structures of Apyc1 reveal a metal-dependent cyclic NMP phosphodiesterase that uses relaxed specificity to target Pycsar cyclic pyrimidine mononucleotide signals. We show that Acb1 and Apyc1 block downstream effector activation and protect from CBASS and Pycsar defence in vivo. Active Acb1 and Apyc1 enzymes are conserved in phylogenetically diverse phages, demonstrating that cleavage of host cyclic nucleotide signals is a key strategy of immune evasion in phage biology.


Assuntos
Bacteriófagos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófago T4/metabolismo , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas/genética , Endonucleases/metabolismo , Escherichia coli/metabolismo , Nucleotídeos Cíclicos/metabolismo , Oligonucleotídeos , Pirimidinas/metabolismo
16.
Nature ; 611(7935): 326-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174646

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Assuntos
Bactérias , Bacteriófagos , Domínios Proteicos , Receptores de Interleucina-1 , Transdução de Sinais , Receptores Toll-Like , Proteínas Virais , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Bacteriófagos/química , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Receptores Toll-Like/química , Cristalografia por Raios X
17.
Nature ; 589(7840): 120-124, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937646

RESUMO

Viperin is an interferon-induced cellular protein that is conserved in animals1. It has previously been shown to inhibit the replication of multiple viruses by producing the ribonucleotide 3'-deoxy-3',4'-didehydro (ddh)-cytidine triphosphate (ddhCTP), which acts as a chain terminator for viral RNA polymerase2. Here we show that eukaryotic viperin originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins produce a set of modified ribonucleotides that include ddhCTP, ddh-guanosine triphosphate (ddhGTP) and ddh-uridine triphosphate (ddhUTP). We further show that prokaryotic viperins protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, suggesting that it has an antiviral mechanism of action similar to that of animal viperin. Our results reveal a class of potential natural antiviral compounds produced by bacterial immune systems.


Assuntos
Antivirais/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófago T7/imunologia , Evolução Molecular , Células Procarióticas/metabolismo , Proteínas/metabolismo , Antivirais/imunologia , Proteínas Arqueais/química , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/química , Bacteriófago T7/enzimologia , Bacteriófago T7/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Células Procarióticas/imunologia , Células Procarióticas/virologia , Proteínas/química , Proteínas/genética , Ribonucleotídeos/biossíntese , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Transcrição Gênica/efeitos dos fármacos
18.
Nature ; 600(7887): 116-120, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853457

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a canonical component of animal and plant immune systems1,2. In plants, intracellular pathogen sensing by immune receptors triggers their TIR domains to generate a molecule that is a variant of cyclic ADP-ribose3,4. This molecule is hypothesized to mediate plant cell death through a pathway that has yet to be resolved5. TIR domains have also been shown to be involved in a bacterial anti-phage defence system called Thoeris6, but the mechanism of Thoeris defence remained unknown. Here we show that phage infection triggers Thoeris TIR-domain proteins to produce an isomer of cyclic ADP-ribose. This molecular signal activates a second protein, ThsA, which then depletes the cell of the essential molecule nicotinamide adenine dinucleotide (NAD) and leads to abortive infection and cell death. We also show that, similar to eukaryotic innate immune systems, bacterial TIR-domain proteins determine the immunological specificity to the invading pathogen. Our results describe an antiviral signalling pathway in bacteria, and suggest that the generation of intracellular signalling molecules is an ancient immunological function of TIR domains that is conserved in both plant and bacterial immunity.


Assuntos
Bacillus/imunologia , Bacillus/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Bacteriófagos/imunologia , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Receptores Toll-Like/química , ADP-Ribose Cíclica/análogos & derivados , ADP-Ribose Cíclica/metabolismo , Evolução Molecular , Modelos Moleculares , NAD/metabolismo , Domínios Proteicos , Especificidade por Substrato/imunologia
19.
Nature ; 586(7829): 429-433, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32877915

RESUMO

Stimulator of interferon genes (STING) is a receptor in human cells that senses foreign cyclic dinucleotides that are released during bacterial infection and in endogenous cyclic GMP-AMP signalling during viral infection and anti-tumour immunity1-5. STING shares no structural homology with other known signalling proteins6-9, which has limited attempts at functional analysis and prevented explanation of the origin of cyclic dinucleotide signalling in mammalian innate immunity. Here we reveal functional STING homologues encoded within prokaryotic defence islands, as well as a conserved mechanism of signal activation. Crystal structures of bacterial STING define a minimal homodimeric scaffold that selectively responds to cyclic di-GMP synthesized by a neighbouring cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzyme. Bacterial STING domains couple the recognition of cyclic dinucleotides with the formation of protein filaments to drive oligomerization of TIR effector domains and rapid NAD+ cleavage. We reconstruct the evolutionary events that followed the acquisition of STING into metazoan innate immunity, and determine the structure of a full-length TIR-STING fusion from the Pacific oyster Crassostrea gigas. Comparative structural analysis demonstrates how metazoan-specific additions to the core STING scaffold enabled a switch from direct effector function to regulation of antiviral transcription. Together, our results explain the mechanism of STING-dependent signalling and reveal the conservation of a functional cGAS-STING pathway in prokaryotic defence against bacteriophages.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Evolução Molecular , Proteínas de Membrana , Sistemas do Segundo Mensageiro , Animais , Bactérias/química , Bactérias/virologia , Proteínas de Bactérias/química , Bacteriófagos , Cristalografia por Raios X , GMP Cíclico/metabolismo , Proteínas de Membrana/química , Modelos Moleculares , NAD/metabolismo , Nucleotidiltransferases/metabolismo
20.
PLoS Genet ; 19(4): e1010694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37023146

RESUMO

It has become clear in recent years that anti-phage defense systems cluster non-randomly within bacterial genomes in so-called "defense islands". Despite serving as a valuable tool for the discovery of novel defense systems, the nature and distribution of defense islands themselves remain poorly understood. In this study, we comprehensively mapped the defense system repertoire of >1,300 strains of Escherichia coli, the most widely studied organism for phage-bacteria interactions. We found that defense systems are usually carried on mobile genetic elements including prophages, integrative conjugative elements and transposons, which preferentially integrate at several dozens of dedicated hotspots in the E. coli genome. Each mobile genetic element type has a preferred integration position but can carry a diverse variety of defensive cargo. On average, an E. coli genome has 4.7 hotspots occupied by defense system-containing mobile elements, with some strains possessing up to eight defensively occupied hotspots. Defense systems frequently co-localize with other systems on the same mobile genetic element, in agreement with the observed defense island phenomenon. Our data show that the overwhelming majority of the E. coli pan-immune system is carried on mobile genetic elements, explaining why the immune repertoire varies substantially between different strains of the same species.


Assuntos
Escherichia coli , Genoma Bacteriano , Escherichia coli/genética , Genoma Bacteriano/genética , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA