Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ASAIO J ; 69(1): 50-58, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346948

RESUMO

Current left ventricular assist devices (LVADs) are set to a fixed rpm and are unable to adjust to physiological demands irrespective of preload or afterload. Autonomous control of LVADs has the potential to reduce septal shift, preserve right ventricle function, and meet physiological demands. A highly innovative resonantly coupled regimen is presented which can achieve this goal. We introduce sensors based on a highly sensitive relationship between transmission coefficient and spatial separation in a resonantly coupled regimen. This relationship represents a polynomial regression. A regimen of an apical sensor and multiple outflow sensors is investigated. A range of separations varying from 50-200 mm was systematically investigated. These ranges consider anatomical & physiological variation(s) in cardiac chamber size. Validation was obtained in porcine heart preparation. The polynomial regression model predicted distance between the sensors with a mean absolute percentage error of 0.77%, 1.07%, and 5.75% for the three putative positions of the outflow sensors and apical sensor when compared with experimental results. A high degree of accuracy (95%) between the predicted and observed distance was obtained. Continuous measurements were done over 90 days to examine drift, with no statistically detectable change in measurements over million sampling cycles. We have demonstrated a reliable sensor methodology without drift for assessing ventricular chamber size in an LVAD setup. This has the potential to allow autonomous control of LVAD based on ventricular chamber size to address some of the adverse events.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Animais , Suínos , Ventrículos do Coração/cirurgia , Coração Auxiliar/efeitos adversos , Função Ventricular Direita
2.
Microbiol Resour Announc ; 9(8)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079635

RESUMO

Halophile-specific enzymes have wide-ranging industrial and commercial applications. Despite their importance, there is a paucity of available halophile whole-genome sequences. Here, we report the draft genome sequences of 16 diverse salt-tolerant strains of bacteria and archaea isolated from a variety of high-salt environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA