Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 154(17): 174705, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241085

RESUMO

Materials design and discovery are often hampered by the slow pace and materials and human costs associated with Edisonian trial-and-error screening approaches. Recent advances in computational power, theoretical methods, and data science techniques, however, are being manifest in a convergence of these tools to enable in silico materials discovery. Here, we present the development and deployment of computational materials data and data analytic approaches for crystalline organic semiconductors. The OCELOT (Organic Crystals in Electronic and Light-Oriented Technologies) infrastructure, consisting of a Python-based OCELOT application programming interface and OCELOT database, is designed to enable rapid materials exploration. The database contains a descriptor-based schema for high-throughput calculations that have been implemented on more than 56 000 experimental crystal structures derived from 47 000 distinct molecular structures. OCELOT is open-access and accessible via a web-user interface at https://oscar.as.uky.edu.

2.
Chem Commun (Camb) ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297177

RESUMO

We investigate the anisotropic thermal expansion behavior of a co-crystalline system composed of 4,4'-azopyridine and trimesic acid (TMA-azo). Using variable-temperature single-crystal X-ray diffraction (SC-XRD), low-frequency Raman spectroscopy, and terahertz time-domain spectroscopy (THz-TDS), we observe significant temperature-induced shifting and broadening of the vibrational absorption features, indicating changes in the intermolecular potential. Our findings reveal that thermal expansion is driven by anharmonic interactions and the potential energy topography, rather than increased molecular dynamics. Density functional theory (DFT) simulations support these results, highlighting significant softening of the potential energy surface (PES) with temperature. This comprehensive approach offers valuable insights into the relationship between structural dynamics and thermal properties, providing a robust framework for designing materials with tailored thermal expansion characteristics.

3.
Chem Sci ; 14(1): 203-213, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36605753

RESUMO

Accelerating the development of π-conjugated molecules for applications such as energy generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-throughput computational screening has proven to be a tremendous aid in this regard, machine learning (ML) and other data-driven methods can further enable orders of magnitude reduction in time while at the same time providing dramatic increases in the chemical space that is explored. However, the lack of benchmark datasets containing the electronic, redox, and optical properties that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML model development. Here, we present a curated dataset containing 25k molecules with density functional theory (DFT) and time-dependent DFT (TDDFT) evaluated properties that include frontier molecular orbitals, ionization energies, relaxation energies, and low-lying optical excitation energies. Using the dataset, we train a hierarchy of ML models, ranging from classical models such as ridge regression to sophisticated graph neural networks, with molecular SMILES representation as input. We observe that graph neural networks augmented with contextual information allow for significantly better predictions across a wide array of properties. Our best-performing models also provide an uncertainty quantification for the predictions. To democratize access to the data and trained models, an interactive web platform has been developed and deployed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA