Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Neurosci ; 35(7): 3034-47, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698741

RESUMO

The rapid regulation of cell signaling in response to calcium in neurons is essential for real-time processing of large amounts of information in the brain. A vital regulatory component, and one of the most energy-intensive biochemical processes in cells, is the elongation phase of mRNA translation, which is controlled by the Ca(2+)/CaM-dependent elongation factor 2 kinase (eEF2K). However, little is known about the dynamics of eEF2K regulation in neurons despite its established role in learning and synaptic plasticity. To explore eEF2K dynamics in depth, we stimulated synaptic activity in mouse primary cortical neurons. We find that synaptic activity results in a rapid, but transient, increase in eEF2K activity that is regulated by a combination of AMPA and NMDA-type glutamate receptors and the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) pathways. We then used computational modeling to test the hypothesis that considering Ca(2+)-coordinated MEK/ERK, mTORC1, and eEF2k activation is sufficient to describe the observed eEF2K dynamics. Although such a model could partially fit the empirical findings, it also suggested that a crucial positive regulator of eEF2K was also necessary. Through additional modeling and empirical evidence, we demonstrate that AMP kinase (AMPK) is also an important regulator of synaptic activity-driven eEF2K dynamics in neurons. Our combined modeling and experimental findings provide the first evidence that it is necessary to consider the combined interactions of Ca(2+) with MEK/ERK, mTORC1, and AMPK to adequately explain eEF2K regulation in neurons.


Assuntos
Córtex Cerebral/citologia , Quinase do Fator 2 de Elongação/metabolismo , Neurônios/fisiologia , Dinâmica não Linear , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Células Cultivadas , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Complexos Multiproteicos/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Bioinformatics ; 29(23): 3105-6, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24021382

RESUMO

Spatial Kappa is a simulator of models written in a variant of the rule-based stochastic modelling language Kappa, with spatial extensions.


Assuntos
Simulação por Computador , Modelos Teóricos , Linguagens de Programação , Difusão , Humanos , Receptores de AMPA/metabolismo , Membranas Sinápticas/metabolismo
3.
Curr Protoc ; 3(12): e940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38050642

RESUMO

In a living cell, proteins interact to assemble both transient and constant molecular complexes, which transfer signals/information around internal pathways. Modern proteomic techniques can identify the constituent components of these complexes, but more detailed analysis demands a network approach linking the molecules together and analyzing the emergent architectural properties. The Bioconductor package BioNAR combines a selection of existing R protocols for network analysis with newly designed original methodological features to support step-by-step analysis of biological/biomedical . Critically, BioNAR supports a pipeline approach whereby many networks and iterative analyses can be performed. Here we present a network analysis pipeline that starts from initiating a network model from a list of components/proteins and their interactions through to identifying its functional components based solely on network topology. We demonstrate that BioNAR can help users achieve a number of network analysis goals that are difficult to achieve anywhere else. This includes how users can choose the optimal clustering algorithm from a range of options based on independent annotation enrichment, and predict a protein's influence within and across multiple subcomplexes in the network and estimate the co-occurrence or linkage between metadata at the network level (e.g., diseases and functions across the network, identifying the clusters whose components are likely to share common function and mechanisms). The package is freely available in Bioconductor release 3.17: https://bioconductor.org/packages/3.17/bioc/html/BioNAR.html. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating and annotating the network Support Protocol 1: Installing BioNAR from RStudio Support Protocol 2: Building the sample network from synaptome.db Basic Protocol 2: Network properties and centrality Basic Protocol 3: Network communities Basic protocol 4: Choosing the optimal clustering algorithm based on the enrichment with annotation terms Basic Protocol 5: Influencing network components and bridgeness Basic Protocol 6: Co-occurrence of the annotations.


Assuntos
Proteômica , Software , Algoritmos , Proteínas
4.
Bioinform Adv ; 3(1): vbad137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860105

RESUMO

Motivation: Biological function in protein complexes emerges from more than just the sum of their parts: molecules interact in a range of different sub-complexes and transfer signals/information around internal pathways. Modern proteomic techniques are excellent at producing a parts-list for such complexes, but more detailed analysis demands a network approach linking the molecules together and analysing the emergent architectural properties. Methods developed for the analysis of networks in social sciences have proven very useful for splitting biological networks into communities leading to the discovery of sub-complexes enriched with molecules associated with specific diseases or molecular functions that are not apparent from the constituent components alone. Results: Here, we present the Bioconductor package BioNAR, which supports step-by-step analysis of biological/biomedical networks with the aim of quantifying and ranking each of the network's vertices based on network topology and clustering. Examples demonstrate that while BioNAR is not restricted to proteomic networks, it can predict a protein's impact within multiple complexes, and enables estimation of the co-occurrence of metadata, i.e. diseases and functions across the network, identifying the clusters whose components are likely to share common function and mechanisms. Availability and implementation: The package is available from Bioconductor release 3.17: https://bioconductor.org/packages/release/bioc/html/BioNAR.html.

5.
Adv Exp Med Biol ; 736: 119-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22161325

RESUMO

Integrative analysis of the neuronal synapse proteome has uncovered an evolutionarily conserved signalling complex that underpins the cognitive capabilities of the brain. Highly dynamic, cell type specific and intricately regulated, the synaptic proteome presents many challenges to systems biology approaches, yet this is likely to be the best route to unlock a new generation of neuroscience research and CNS drug development that society so urgently demands. Most systems biology approaches today have focussed on exploiting protein-protein interaction data to their fullest extent within static interaction models. These have revealed structure-function relationships within the protein network, uncovered new candidate genes for genetic studies and drug research and development and finally provided a means to study the evolution of the system. The rapid maturation of medium and high-throughput biochemical technologies means that dissecting the synapse proteome's dynamic complexity is fast becoming a reality. Here we look at these new challenges and explore rule-based modelling as a basis for a new generation of synaptic models.


Assuntos
Modelos Neurológicos , Proteoma/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Humanos , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Proteômica/métodos , Biologia de Sistemas/métodos
6.
Bioinform Adv ; 2(1): vbac086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699346

RESUMO

Summary: The neuronal synapse is underpinned by a large and diverse proteome but the molecular evidence is spread across many primary datasets. These data were recently curated into a single dataset describing a landscape of ∼8000 proteins found in studies of mammalian synapses. Here, we describe programmatic access to the dataset via the R/Bioconductor package Synaptome.db, which enables convenient and in-depth data analysis from within the Bioconductor environment. Synaptome.db allows users to obtain the respective gene information, e.g. subcellular localization, brain region, gene ontology, disease association and construct custom protein-protein interaction network models for gene sets and entire subcellular compartments. Availability and implementation: The package Synaptome.db is part of Bioconductor since release 3.14, https://bioconductor.org/packages/release/data/annotation/html/synaptome.db.html, it is open source and available under the Artistic license 2.0. The development version is maintained on GitHub (https://github.com/lptolik/synaptome.db). Full documentation including examples is provided in the form of vignettes on the package webpage. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

7.
Front Chem ; 10: 1059593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700074

RESUMO

The seamless integration of human disease-related mutation data into protein structures is an essential component of any attempt to correctly assess the impact of the mutation. The key step preliminary to any structural modelling is the identification of the isoforms onto which mutations should be mapped due to there being several functionally different protein isoforms from the same gene. To handle large sets of data coming from omics techniques, this challenging task needs to be automatized. Here we present the MoNvIso (Modelling eNvironment for Isoforms) code, which identifies the most useful isoform for computational modelling, balancing the coverage of mutations of interest and the availability of templates to build a structural model of both the wild-type isoform and the related variants.

8.
Sci Rep ; 11(1): 9967, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976238

RESUMO

Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein-protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.


Assuntos
Sinapses/genética , Sinapses/metabolismo , Sinapses/fisiologia , Bases de Dados Genéticas , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Proteômica
9.
Methods Mol Biol ; 1945: 363-390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945256

RESUMO

RKappa is a framework for the development, simulation, and analysis of rule-based models within the mature statistically empowered R environment. It is designed for model editing, parameter identification, simulation, sensitivity analysis, and visualization. The framework is optimized for high-performance computing platforms and facilitates analysis of large-scale systems biology models where knowledge of exact mechanisms is limited and parameter values are uncertain.The RKappa software is an open-source (GLP3 license) package for R, which is freely available online ( https://github.com/lptolik/R4Kappa ).


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Biologia de Sistemas/métodos , Software
10.
Front Cell Dev Biol ; 7: 222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681758

RESUMO

The p140Cap adaptor protein is a scaffold molecule physiologically expressed in few epithelial tissues, such as the mammary gland, and in differentiated neurons. While the role of p140Cap in mammary gland epithelia is not still understood, we already know that a significant subset of breast cancers express p140Cap. In the subgroup of ERBB2-amplified breast cancers, a high p140Cap status predicts a significantly lower probability of developing a distant event and a clear difference in survival. p140Cap is causal in dampening ERBB2-positive tumor cell progression, impairing tumor onset and growth, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. Since only a few p140Cap interacting proteins have been identified in breast cancer and the molecular complexes and pathways underlying the cancer function of p140Cap are largely unknown, we generated a p140Cap interactome from ERBB2-positive breast cancer cells, identifying cancer specific components and those shared with the synaptic interactome. We identified 373 interacting proteins in cancer cells, including those with functions relevant to cell adhesion, protein homeostasis, regulation of cell cycle and apoptosis, which are frequently deregulated in cancer. Within the interactome, we identified 15 communities (clusters) with topology-functional relationships. In neurons, where p140Cap is key in regulating synaptogenesis, synaptic transmission and synaptic plasticity, it establishes an extensive interactome with proteins that cluster to sub complexes located in the postsynaptic density. p140Cap interactors converge on key synaptic processes, including synaptic transmission, actin cytoskeleton remodeling and cell-cell junction organization. Comparing the breast cancer to the synaptic interactome, we found 39 overlapping proteins, a relatively small overlap. However, cell adhesion and remodeling of actin cytoskeleton clearly emerge as common terms in the shared subset. Thus, the functional signature of the two interactomes is primarily determined by organ/tissue and functional specificity, while the overlap provides a list of shared functional terms, which might be linked to both cancer and neurological functions.

11.
Sci Rep ; 8(1): 5658, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618727

RESUMO

Polymerisation of clathrin is a key process that underlies clathrin-mediated endocytosis. Clathrin-coated vesicles are responsible for cell internalization of external substances required for normal homeostasis and life -sustaining activity. There are several hypotheses describing formation of closed clathrin structures. According to one of the proposed mechanisms cage formation may start from a flat lattice buildup on the cellular membrane, which is later transformed into a curved structure. Creation of the curved surface requires rearrangement of the lattice, induced by additional molecular mechanisms. Different potential mechanisms require a modeling framework that can be easily modified to compare between them. We created an extendable rule-based model that describes polymerisation of clathrin molecules and various scenarios of cage formation. Using Global Sensitivity Analysis (GSA) we obtained parameter sets describing clathrin pentagon closure and the emergence/production and closure of large-size clathrin cages/vesicles. We were able to demonstrate that the model can reproduce budding of the clathrin cage from an initial flat array.


Assuntos
Membrana Celular/química , Clatrina/química , Invaginações Revestidas da Membrana Celular/química , Modelos Teóricos , Polimerização , Conformação Proteica , Humanos , Termodinâmica
12.
Proteomes ; 6(3)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071621

RESUMO

The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.

13.
Nat Neurosci ; 21(1): 130-138, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203896

RESUMO

The postsynaptic proteome of excitatory synapses comprises ~1,000 highly conserved proteins that control the behavioral repertoire, and mutations disrupting their function cause >130 brain diseases. Here, we document the composition of postsynaptic proteomes in human neocortical regions and integrate it with genetic, functional and structural magnetic resonance imaging, positron emission tomography imaging, and behavioral data. Neocortical regions show signatures of expression of individual proteins, protein complexes, biochemical and metabolic pathways. We characterized the compositional signatures in brain regions involved with language, emotion and memory functions. Integrating large-scale GWAS with regional proteome data identifies the same cortical region for smoking behavior as found with fMRI data. The neocortical postsynaptic proteome data resource can be used to link genetics to brain imaging and behavior, and to study the role of postsynaptic proteins in localization of brain functions.


Assuntos
Neocórtex/patologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Biologia Computacional , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Potenciais da Membrana/genética , Microinjeções , Neocórtex/diagnóstico por imagem , Proteínas do Tecido Nervoso/genética , Oócitos , Oxigênio/sangue , Técnicas de Patch-Clamp , Tomografia por Emissão de Pósitrons , Proteômica , Acidente Vascular Cerebral/patologia , Sinapses/ultraestrutura , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
14.
Front Mol Neurosci ; 10: 212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713243

RESUMO

Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.

16.
PLoS One ; 8(5): e63191, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658807

RESUMO

Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non-Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2-5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load synaptic protein turnover places on individual neurons is very substantial.


Assuntos
Proteínas/metabolismo , Proteômica , Sinapses/metabolismo , Animais , Compartimento Celular , Cinética , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico , Ratos , Ratos Wistar
17.
Mol Biosyst ; 7(10): 2813-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21874189

RESUMO

The postsynaptic compartment of the excitatory glutamatergic synapse contains hundreds of distinct polypeptides with a wide range of functions (signalling, trafficking, cell-adhesion, etc.). Structural dynamics in the post-synaptic density (PSD) are believed to underpin cognitive processes. Although functionally and morphologically diverse, PSD proteins are generally enriched with specific domains, which precisely define the mode of clustering essential for signal processing. We applied a stochastic calculus of domain binding provided by a rule-based modelling approach to formalise the highly combinatorial signalling pathway in the PSD and perform the numerical analysis of the relative distribution of protein complexes and their sizes. We specified the combinatorics of protein interactions in the PSD by rules, taking into account protein domain structure, specific domain affinity and relative protein availability. With this model we interrogated the critical conditions for the protein aggregation into large complexes and distribution of both size and composition. The presented approach extends existing qualitative protein-protein interaction maps by considering the quantitative information for stoichiometry and binding properties for the elements of the network. This results in a more realistic view of the postsynaptic proteome at the molecular level.


Assuntos
Modelos Teóricos , Proteoma , Sinapses/metabolismo , Transdução de Sinais , Processos Estocásticos
18.
BMC Syst Biol ; 5: 36, 2011 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-21352558

RESUMO

BACKGROUND: The storage of photosynthetic carbohydrate products such as starch is subject to complex regulation, effected at both transcriptional and post-translational levels. The relevant genes in plants show pronounced daily regulation. Their temporal RNA expression profiles, however, do not predict the dynamics of metabolite levels, due to the divergence of enzyme activity from the RNA profiles.Unicellular phytoplankton retains the complexity of plant carbohydrate metabolism, and recent transcriptomic profiling suggests a major input of transcriptional regulation. RESULTS: We used a quasi-steady-state, constraint-based modelling approach to infer the dynamics of starch content during the 12 h light/12 h dark cycle in the model alga Ostreococcus tauri. Measured RNA expression datasets from microarray analysis were integrated with a detailed stoichiometric reconstruction of starch metabolism in O. tauri in order to predict the optimal flux distribution and the dynamics of the starch content in the light/dark cycle. The predicted starch profile was validated by experimental data over the 24 h cycle. The main genetic regulatory targets within the pathway were predicted by in silico analysis. CONCLUSIONS: A single-reaction description of starch production is not able to account for the observed variability of diurnal activity profiles of starch-related enzymes. We developed a detailed reaction model of starch metabolism, which, to our knowledge, is the first attempt to describe this polysaccharide polymerization while preserving the mass balance relationships. Our model and method demonstrate the utility of a quasi-steady-state approach for inferring dynamic metabolic information in O. tauri directly from time-series gene expression data.


Assuntos
Clorófitas/química , Clorófitas/metabolismo , Ritmo Circadiano/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/genética , Modelos Biológicos , Amido/análise , Clorófitas/genética , Deleção de Genes , Perfilação da Expressão Gênica , Análise em Microsséries
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA