Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Stem Cells ; 34(2): 392-404, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26439006

RESUMO

Urinary incontinence (UI) and erectile dysfunction (ED) are the most common functional urological disorders and the main sequels of radical prostatectomy (RP) for prostate cancer. Mesenchymal stem cell (MSC) therapy holds promise for repairing tissue damage due to RP. Because animal studies accurately replicating post-RP clinical UI and ED are lacking, little is known about the mechanisms underlying the urological benefits of MSC in this setting. To determine whether and by which mechanisms MSC can repair damages to both striated urethral sphincter (SUS) and penis in the same animal, we delivered human multipotent adipose stem cells, used as MSC model, in an immunocompetent rat model replicating post-RP UI and ED. In this model, we demonstrated by using noninvasive methods in the same animal from day 7 to day 90 post-RP injury that MSC administration into both the SUS and the penis significantly improved urinary continence and erectile function. The regenerative effects of MSC therapy were not due to transdifferentiation and robust engraftment at injection sites. Rather, our results suggest that MSC benefits in both target organs may involve a paracrine process with not only soluble factor release by the MSC but also activation of the recipient's secretome. These two effects of MSC varied across target tissues and damaged-cell types. In conclusion, our work provides new insights into the regenerative properties of MSC and supports the ability of MSC from a single source to repair multiple types of damage, such as those seen after RP, in the same individual.


Assuntos
Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Complicações Pós-Operatórias/terapia , Prostatectomia/efeitos adversos , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Ratos , Ratos Sprague-Dawley , Uretra/metabolismo , Uretra/patologia
2.
Stem Cells ; 32(1): 216-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115309

RESUMO

Mesenchymal stem cells (MSC) are known to repair broken heart tissues primarily through a paracrine fashion while emerging evidence indicate that MSC can communicate with cardiomyocytes (CM) through tunneling nanotubes (TNT). Nevertheless, no link has been so far established between these two processes. Here, we addressed whether cell-to-cell communication processes between MSC and suffering cardiomyocytes and more particularly those involving TNT control the MSC paracrine regenerative function. In the attempt to mimic in vitro an injured heart microenvironment, we developed a species mismatch coculture system consisting of terminally differentiated CM from mouse in a distressed state and human multipotent adipose derived stem cells (hMADS). In this setting, we found that crosstalk between hMADS and CM through TNT altered the secretion by hMADS of cardioprotective soluble factors such as VEGF, HGF, SDF-1α, and MCP-3 and thereby maximized the capacity of stem cells to promote angiogenesis and chemotaxis of bone marrow multipotent cells. Additionally, engraftment experiments into mouse infarcted hearts revealed that in vitro preconditioning of hMADS with cardiomyocytes increased the cell therapy efficacy of naïve stem cells. In particular, in comparison with hearts treated with stem cells alone, those treated with cocultured ones exhibited greater cardiac function recovery associated with higher angiogenesis and homing of bone marrow progenitor cells at the infarction site. In conclusion, our findings established the first relationship between the paracrine regenerative action of MSC and the nanotubular crosstalk with CM and emphasize that ex vivo manipulation of these communication processes might be of interest for optimizing current cardiac cell therapies.


Assuntos
Compartimento Celular/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Nanotubos , Animais , Técnicas de Cocultura , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Comunicação Parácrina
3.
FASEB J ; 23(7): 2120-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19246487

RESUMO

Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts. The infarct size was increased 24 h after IR in CB2(-/-) vs. wild-type (WT) hearts and decreased when WT hearts were injected with the CB2 agonist JWH133 (3 mg/kg) at reperfusion. Compared with WT hearts, CB2(-/-) hearts showed widespread injury 3 d after IR, with enhanced apoptosis and remodeling affecting the remote myocardium. Finally, CB2(-/-) hearts exhibited exacerbated fibrosis, associated with left ventricular dysfunction 4 wk after IR, whereas their WT counterparts recovered normal function. Cardiac myocytes and fibroblasts isolated from CB2(-/-) hearts displayed a higher H(2)O(2)-induced death than WT cells, whereas 1 microM JWH133 triggered survival effects. Furthermore, H(2)O(2)-induced myofibroblast activation was increased in CB2(-/-) fibroblasts but decreased in 1 microM JWH133-treated WT fibroblasts, compared with that in WT cells. Therefore, CB2 receptor activation may protect against post-IR heart failure through direct inhibition of cardiac myocyte and fibroblast death and prevention of myofibroblast activation.


Assuntos
Cardiomiopatias/etiologia , Fibroblastos/citologia , Traumatismo por Reperfusão Miocárdica/complicações , Miocárdio/patologia , Miócitos Cardíacos/citologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Sobrevivência Celular , Peróxido de Hidrogênio , Camundongos , Camundongos Knockout , Substâncias Protetoras , Receptor CB2 de Canabinoide/deficiência , Disfunção Ventricular Esquerda/etiologia
4.
J Mol Cell Cardiol ; 46(5): 713-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19233193

RESUMO

The purpose of the present study was to investigate the potential cardioprotective effects of an original approach based on the properties of the X chromosome-linked Inhibitor of Apoptosis (XIAP), the most effective endogenous inhibitor of apoptosis. For this purpose, the C-terminal part of XIAP (BIR3 and RING domains) was fused to the protein transduction domain (PTD) of the HIV1 transactivator of transcription, which confers to fused protein the ability to cross cell membranes. This protein, so-called PTD-BIR3/RING, was administered intravenously in C57BL/6J mice subjected to 30 min coronary artery occlusion and 24 h of reperfusion. Administration of PTD-BIR3/RING at 5 min before and 30 min after the onset of reperfusion reduced infarct size vs control (23+/-2% vs 41+/-4% and 27+/-4% vs 41+/-3%, respectively, p<0.05). Similar reduction in infarct size was observed when PTD-BIR3/RING was administered prior to ischemia (28+/-1% vs 44+/-3%). In addition to inhibition of caspase-3 and -9 activities, PTD-BIR3/RING induced an inhibition of caspase-8 and several other actors of the apoptotic pathways. In conclusion, this study demonstrates that the administration of PTD-BIR3/RING reduces myocardial infarct size even when injected during reperfusion through interruption of caspase activation by pharmacologically mimicking endogenous XIAP.


Assuntos
Mimetismo Molecular , Infarto do Miocárdio/prevenção & controle , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Western Blotting , Peso Corporal , Caspases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Estrutura Terciária de Proteína , Ratos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química
5.
Am J Physiol Heart Circ Physiol ; 295(4): H1580-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689499

RESUMO

Ischemic postconditioning (IPCD) significantly reduces infarct size in healthy animals and protects the human heart. Because obesity is a major risk factor of cardiovascular diseases, the effects of IPCD were investigated in 8- to 10-wk-old leptin-deficient obese (ob/ob) mice and compared with wild-type C57BL/6J (WT) mice. All animals underwent 30 min of coronary artery occlusion followed by 24 h of reperfusion associated or not with IPCD (6 cycles of 10-s occlusion, 10-s reperfusion). Additional mice were killed at 10 min of reperfusion for Western blotting. IPCD reduced infarct size by 58% in WT mice (33+/-1% vs. 14+/-3% for control and IPCD, respectively, P<0.05) but failed to induce cardioprotection in ob/ob mice (53+/-4% vs. 56+/-5% for control and IPCD, respectively). In WT mice, IPCD significantly increased the phosphorylation of Akt (+77%), ERK1/2 (+41%), and their common target p70S6K1 (+153% at Thr389 and +57% at Thr421/Ser424). In addition, the phosphorylated AMP-activated protein kinase (AMPK)-to-total AMPK ratio was also increased by IPCD in WT mice (+64%, P<0.05). This was accompanied by decreases in phosphatase and tensin homolog deleted on chromosome 10 (PTEN), MAP kinase phosphatase (MKP)-3, and protein phosphatase (PP)2C levels. In contrast, IPCD failed to increase the phosphorylation state of all these kinases in ob/ob mice, and the level of the three phosphatases was significantly increased. Thus, although IPCD reduces myocardial infarct size in healthy animals, its cardioprotective effect vanishes with obesity. The lack of enhanced phosphorylation by IPCD of Akt, ERK1/2, p70S6K1, and AMPK might partly explain the loss of cardioprotection in this experimental model of obese mice.


Assuntos
Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Modelos Animais de Doenças , Fosfatase 6 de Especificidade Dupla/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Obesidade/complicações , Obesidade/patologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 2C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
6.
J Mol Cell Cardiol ; 43(3): 344-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17707397

RESUMO

Deficiency in cellular thiol tripeptide glutathione (L-gamma glutamyl-cysteinyl-glycine) determines the severity of several chronic and inflammatory human diseases that may be relieved by oral treatment with the glutathione precursor N-acetylcysteine (NAC). Here, we showed that the left ventricle (LV) of human failing heart was depleted in total glutathione by 54%. Similarly, 2-month post-myocardial infarction (MI) rats, with established chronic heart failure (CHF), displayed deficiency in LV glutathione. One-month oral NAC treatment normalized LV glutathione, improved LV contractile function and lessened adverse LV remodelling in 3-month post-MI rats. Biochemical studies at two time-points of NAC treatment, 3 days and 1 month, showed that inhibition of the neutral sphingomyelinase (N-SMase), Bcl-2 depletion and caspase-3 activation, were key, early and lasting events associated with glutathione repletion. Attenuation of oxidative stress, downregulation of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and its TNF-R1 receptor were significant after 1-month NAC treatment. These data indicate that, besides glutathione deficiency, N-SMase activation is associated with post-MI CHF progression, and that blockade of N-SMase activation participates to post-infarction failing heart recovery achieved by NAC treatment. NAC treatment in post-MI rats is a way to disrupt the vicious sTNF-alpha/TNF-R1/N-SMase cycle.


Assuntos
Acetilcisteína/uso terapêutico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Ecocardiografia Doppler , Glutationa/deficiência , Glutationa/metabolismo , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA