Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771057

RESUMO

(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.


Assuntos
Antineoplásicos , Glioma , Melastomataceae , Humanos , Brasil , Clorofórmio , Linhagem Celular , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Melastomataceae/química , Glioma/tratamento farmacológico , Ecossistema
2.
Planta ; 256(4): 84, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114308

RESUMO

MAIN CONCLUSION: This review highlights the most relevant and recent updated information available on the defense responses of selected hosts against Xanthomonas spp. Xanthomonas is one of the most important genera of Gram-negative phytopathogenic bacteria, severely affecting the productivity of economically important crops worldwide, colonizing either the vascular system or the mesophyll tissue of the host. Due to its rapid propagation, Xanthomonas poses an enormous challenge to farmers, because it is usually controlled using huge quantities of copper-based chemicals, adversely impacting the environment. Thus, developing new ways of preventing colonization by these bacteria has become essential. Advances in genomic and transcriptomic technologies have significantly elucidated at molecular level interactions between various crops and Xanthomonas species. Understanding how these hosts respond to the infection is crucial if we are to exploit potential approaches for improving crop breeding and cutting productivity losses. This review focuses on our current knowledge of the defense response mechanisms in agricultural crops after Xanthomonas infection. We describe the molecular basis of host-bacterium interactions over a broad spectrum with the aim of improving our fundamental understanding of which genes are involved and how they work in this interaction, providing information that can help to speed up plant breeding programs, namely using gene editing approaches.


Assuntos
Xanthomonas , Bactérias , Cobre , Produtos Agrícolas/genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia
3.
Biophys J ; 120(8): 1443-1453, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33607085

RESUMO

Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device's internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ∼4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.


Assuntos
Biofilmes , Xylella , Aderência Bacteriana , Adesão Celular , Xilema
4.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806119

RESUMO

Cervical cancer is the third most common in Brazilian women. The chemotherapy used for the treatment of this disease can cause many side effects; then, to overcome this problem, new treatment options are necessary. Natural compounds represent one of the most promising sources for the development of new drugs. In this study, 13 different species of 6 families from the Brazilian Cerrado vegetation biome were screened against human cervical cancer cell lines (CCC). Some of these species were also evaluated in one normal keratinocyte cell line (HaCaT). The effect of crude extracts on cell viability was evaluated by a colorimetric method (MTS assay). Extracts from Annona crassiflora, Miconia albicans, Miconia chamissois, Stryphnodendron adstringens, Tapirira guianensis, Xylopia aromatica, and Achyrocline alata showed half-maximal inhibitory concentration (IC50) values < 30 µg/mL for at least one CCC. A. crassiflora and S. adstringens extracts were selective for CCC. Mass spectrometry (Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ESI FT-ICR MS)) of A. crassiflora identified fatty acids and flavonols as secondary compounds. One of the A. crassiflora fractions, 7C24 (from chloroform partition), increased H2AX phosphorylation (suggesting DNA damage), PARP cleavage, and cell cycle arrest in CCC. Kaempferol-3-O-rhamnoside and oleic acid were bioactive molecules identified in 7C24 fraction. These findings emphasize the importance of investigating bioactive molecules from natural sources for developing new anti-cancer drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bioprospecção/métodos , Colorimetria/métodos , Neoplasias do Colo do Útero/metabolismo , Annona/metabolismo , Brasil/epidemiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Ecossistema , Ácidos Graxos/química , Feminino , Flavonóis/química , Células HaCaT , Células HeLa , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Neoplasias do Colo do Útero/tratamento farmacológico
5.
Planta ; 252(6): 103, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185761

RESUMO

MAIN CONCLUSION: Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.


Assuntos
Citrus , Expressão Gênica , Metiltransferases , Salicilatos , Xylella , Citrus/genética , Citrus/microbiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças das Plantas , Proteínas Recombinantes/genética , Salicilatos/química , Nicotiana/genética , Volatilização , Xylella/fisiologia
6.
Ann Bot ; 119(5): 749-774, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28065920

RESUMO

BACKGROUND: Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. SCOPE: This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot.


Assuntos
Citrus/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Citrus/virologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
7.
Nano Lett ; 16(7): 4656-64, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336224

RESUMO

Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues.


Assuntos
Adesinas Bacterianas/química , Aderência Bacteriana , Biofilmes , Nanofios , Xylella/fisiologia
8.
BMC Genomics ; 17(1): 623, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515968

RESUMO

BACKGROUND: Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. RESULTS: We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. CONCLUSIONS: This work provided the first comprehensive evolutionary analysis of the LRR-RLKs in Citrus. A large expansion of LRR-XII in Citrus genomes suggests that it might play a key role in adaptive responses in host-pathogen co-evolution, related to the perennial life cycle and domestication of the citrus crop species.


Assuntos
Citrus/genética , Evolução Molecular , Genoma de Planta , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Citrus/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/metabolismo
9.
Microbiology (Reading) ; 161(Pt 5): 1018-1033, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25737482

RESUMO

Strains of Xylella fastidiosa constitute a complex group of bacteria that develop within the xylem of many plant hosts, causing diseases of significant economic importance, such as Pierce's disease in North American grapevines and citrus variegated chlorosis in Brazil. X. fastidiosa has also been obtained from other host plants, in direct correlation with the development of diseases, as in the case of coffee leaf scorch (CLS)--a disease with potential to cause severe economic losses to the Brazilian coffee industry. This paper describes a thorough genomic characterization of coffee-infecting X. fastidiosa strains, initially performed through a microarray-based approach, which demonstrated that CLS strains could be subdivided in two phylogenetically distinct subgroups. Whole-genomic sequencing of two of these bacteria (one from each subgroup) allowed identification of ORFs and horizontally transferred elements (HTEs) that were specific to CLS-related X. fastidiosa strains. Such analyses confirmed the size and importance of HTEs as major mediators of chromosomal evolution amongst these bacteria, and allowed identification of differences in gene content, after comparisons were made with previously sequenced X. fastidiosa strains, isolated from alternative hosts. Although direct experimentation still needs to be performed to elucidate the biological consequences associated with such differences, it was interesting to verify that CLS-related bacteria display variations in genes that produce toxins, as well as surface-related factors (such as fimbrial adhesins and LPS) that have been shown to be involved with recognition of specific host factors in different pathogenic bacteria.


Assuntos
Coffea/microbiologia , Genoma Bacteriano , Genômica , Xylella/genética , Brasil , Cromossomos Bacterianos , Hibridização Genômica Comparativa , Biologia Computacional , Elementos de DNA Transponíveis , Evolução Molecular , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , Xylella/classificação , Xylella/isolamento & purificação
10.
Protein Expr Purif ; 113: 72-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25979465

RESUMO

The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/ß fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas Recombinantes/química , Fatores de Transcrição/química , Xylella/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Cobre/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Xylella/efeitos dos fármacos
11.
Pest Manag Sci ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647195

RESUMO

BACKGROUND: Xylella fastidiosa is a multi-host bacterium that can be detected in hundreds of plant species including several crops. Diseases caused by X. fastidiosa are considered a threat to global food production. The primary method for managing diseases caused by X. fastidiosa involves using insecticides to control the vector. Hence, it is necessary to adopt new and sustainable disease management technologies to control not only the insect but also the bacteria and plant health. We demonstrated that N-acetylcysteine (NAC), a low-cost cysteine analogue, is a sustainable molecule that can be used in agriculture to decrease the damage caused by X. fastidiosa and improve plant health. RESULTS: Using 15N-NAC we proved that this analogue was absorbed by the roots and transported to different parts of the plant. Inside the plant, NAC reduced the bacterial population by 60-fold and the number of xylem vessels blocked by bacterial biofilms. This reflected in a recovery of 0.28-fold of the daily sap flow compared to health plants. In addition, NAC-treated citrus variegated chlorosis (CVC) plants decreased the oxidative stress by improving the activity of detoxifying enzymes. Moreover, the use of NAC in field conditions positively contributed to the increase in fruit yield of CVC-diseased plants. CONCLUSION: Our research not only advances the understanding of NAC absorption in plants, but also indicates its dual effect as an antimicrobial and antioxidant molecule. This, in turn, negatively affects bacterial survival while improving plant health by decreasing oxidative stress. Overall, the positive field-based evidence supports the viability of NAC as a sustainable agricultural application. © 2024 Society of Chemical Industry.

12.
BMC Genomics ; 14: 676, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24090429

RESUMO

BACKGROUND: Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. RESULTS: Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. CONCLUSIONS: This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen.


Assuntos
Citrus/genética , Citrus/microbiologia , Ácidos Indolacéticos/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Análise de Sequência de RNA/métodos , Xylella/fisiologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Citrus/efeitos dos fármacos , Citrus/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise/efeitos dos fármacos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Metabolismo Secundário/efeitos dos fármacos , Metabolismo Secundário/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Appl Environ Microbiol ; 79(11): 3444-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23542613

RESUMO

Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Antibacterianos/farmacologia , Comunicação Celular/fisiologia , Fenótipo , Xylella/enzimologia , Xylella/patogenicidade , Sequência de Aminoácidos , Benzotiazóis , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Primers do DNA/genética , Diaminas , Resistência a Medicamentos/genética , Escherichia coli , Deleção de Genes , Teste de Complementação Genética , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Compostos Orgânicos , Pseudomonas aeruginosa/enzimologia , Quinolinas , Alinhamento de Sequência , Tobramicina/farmacologia , Vitis/microbiologia , Xylella/efeitos dos fármacos , Xylella/fisiologia
14.
Microb Pathog ; 59-60: 1-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23474016

RESUMO

The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity.


Assuntos
5'-Nucleotidase/metabolismo , Xylella/enzimologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Coenzimas/metabolismo , Perfilação da Expressão Gênica , Metais/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Xylella/fisiologia
15.
J Periodontol ; 94(7): 858-867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36704931

RESUMO

BACKGROUND: Ozone is a molecule that plays an important role in dentistry, specially for wound healing. The aim of the present study was to clinically and immunologically evaluate the effect of ozonated oil on the healing of palatal wounds. METHODS: This is a prospective, longitudinal, triple-blind, randomized, placebo-controlled clinical trial. The groups were divided as follows: Test group (n = 14): after removal of the free gingival graft (FGG), the palatal wound was treated with ozonized seed sunflower oil with a peroxide index between 510 and 625 meq O2 /kg; Control group (n = 14): after removal of the FGG, the palatal wound was treated with non-ozonated sunflower oil (placebo). The treatments were applied three times a day, for 7 days. RESULTS: There were no significant differences in the measurements of wound area (mm2 ) between the test and control groups in the different periods evaluated (0, 3, 7, and 14 days; p > 0.05). The intra-group analysis showed a significant decrease in wound size over the course of days (0, 3, 7, and 14 days; p < 0.05). Vascular endothelial growth factor (VEGF; pg/mL) presented a significant reduction at 7 days (p < 0.05) compared to day 3 in the test group (p < 0.05). There was a statistical difference for malondialdehyde (MDA; pg/mL) in the test group between 3 and 7 days post-treatment (p < 0.05) and between test and control groups on the 7th day (p < 0.05). CONCLUSIONS: The application of highly ozonated sunflower oil did not improve the remaining scar area of the palate, decreasing the VEGF and increasing the oxidative stress marker MDA.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Cicatrização , Óleo de Girassol/farmacologia , Estudos Prospectivos , Palato/cirurgia
16.
J Bacteriol ; 194(17): 4561-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22730126

RESUMO

Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cobre/farmacologia , Tetraciclina/farmacologia , Xylella/efeitos dos fármacos , Xylella/genética , Antibacterianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Cobre/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Plantas/microbiologia , Tetraciclina/metabolismo , Xylella/crescimento & desenvolvimento , Xylella/metabolismo
18.
Front Plant Sci ; 13: 836582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401588

RESUMO

Citrus canker is a destructive disease caused by Xanthomonas citri subsp. citri, which affects all commercial sweet orange (Citrus sinensis [L.] Osbeck) cultivars. Salicylic acid (SA) and systemic-acquired resistance (SAR) have been demonstrated to have a crucial role in mediating plant defense responses against this phytopathogen. To induce SAR, SA is converted to methyl salicylate (MeSA) by an SA-dependent methyltransferase (SAMT) and translocated systemically to prime noninfected distal tissues. Here, we generated sweet orange transgenic plants (based on cvs. Hamlin and Valencia) overexpressing the SAMT gene from Citrus (CsSAMT) and evaluated their resistance to citrus canker. We obtained four independent transgenic lines and confirmed their significantly higher MeSA volatilization compared to wild-type controls. Plants overexpressing CsSAMT showed reduced symptoms of citrus canker and bacterial populations in all transgenic lines without compromising plant development. One representative transgenic line (V44SAMT) was used to evaluate resistance response in primary and secondary sites. Without inoculation, V44SAMT modulated CsSAMT, CsNPR1, CsNPR3, and CsWRKY22 expression, indicating that this plant is in a primed defense status. The results demonstrate that MeSA signaling prompts the plant to respond more efficiently to pathogen attacks and induces immune responses in transgenic plants at both primary and secondary infection sites.

19.
ACS Appl Bio Mater ; 5(10): 4903-4912, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36162102

RESUMO

SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.


Assuntos
Biofilmes , Polímeros , Polímeros/farmacologia , Aderência Bacteriana , Propriedades de Superfície , Membrana Celular
20.
Proteome Sci ; 9: 58, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21939513

RESUMO

BACKGROUND: Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. RESULTS: We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. CONCLUSIONS: We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA