Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 15(5): e1006475, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059498

RESUMO

Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity in the olivary network during its dynamic response to sensory modulation. Thus, interactions between intrinsic properties and extrinsic inputs can explain the variations of spiking activity of olivary neurons, providing a temporal framework for the creation of both the short-term and long-term changes in cerebellar output.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Olivar/fisiologia , Animais , Cerebelo/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Junções Comunicantes/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Periodicidade
2.
Ann Neurol ; 77(6): 1027-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25762286

RESUMO

OBJECTIVE: Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike-and-wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures. METHODS: Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short-lasting, on-demand CN stimulation could disrupt epileptic seizures. RESULTS: We found that a subset of CN neurons show phase-locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ-aminobutyric acid type A (GABA-A) agonist muscimol increased GSWD occurrence up to 37-fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA-A antagonist gabazine decimated its occurrence. A single short-lasting (30-300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed-loop system, GSWDs were detected and stopped within 500 milliseconds. INTERPRETATION: CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated.


Assuntos
Potenciais de Ação/fisiologia , Núcleos Cerebelares/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canais de Cálcio Tipo N/genética , Núcleos Cerebelares/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Optogenética , Tálamo/efeitos dos fármacos , Tálamo/fisiopatologia
3.
J Neurosci ; 34(5): 1949-62, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478374

RESUMO

Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as the RW became narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum-cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing.


Assuntos
Aprendizagem por Associação/fisiologia , Cerebelo/citologia , Cerebelo/fisiologia , Potenciação de Longa Duração/fisiologia , Células de Purkinje/fisiologia , Vibrissas/inervação , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento de Ingestão de Líquido/fisiologia , Feminino , Potenciação de Longa Duração/genética , Camundongos , Percepção de Movimento/fisiologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Tempo de Reação/fisiologia , Sinapses/fisiologia , Fatores de Tempo , Vigília , Privação de Água/fisiologia
4.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561331

RESUMO

Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Reflexo/fisiologia , Vibrissas/fisiologia , Animais , Cerebelo/citologia , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estimulação Física , Tato
5.
Cell Rep ; 13(9): 1977-88, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655909

RESUMO

Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebelar/metabolismo , Animais , Piscadela/fisiologia , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA