Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 18(9): 1082-1090, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34480155

RESUMO

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Animais , Células COS , Chlorocebus aethiops , Bases de Dados Factuais , Software
3.
PLoS Comput Biol ; 14(5): e1006157, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782491

RESUMO

In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Biologia Computacional/métodos , Modelos Neurológicos , Algoritmos , Animais , Cálcio/química , Cálcio/fisiologia , Bases de Dados Factuais , Camundongos , Imagem Molecular , Imagem Óptica , Retina/citologia , Neurônios Retinianos/citologia , Neurônios Retinianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA