Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(8): 3322-3327, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718406

RESUMO

The Northwest Forest Plan (NWFP) initiated one of the most sweeping changes to forest management in the world, affecting 10 million hectares of federal land. The NWFP is a science-based plan incorporating monitoring and adaptive management and provides a unique opportunity to evaluate the influence of policy. We used >25 years of region-wide bird surveys, forest data, and land-ownership maps to test this policy's effect on biodiversity. Clearcutting decreased rapidly, and we expected populations of older-forest-associated birds to stabilize on federal land, but to continue declining on private industrial lands where clearcutting continued. In contrast, we expected declines in early-seral-associated species on federal land because of reduced anthropogenic disturbance since the NWFP. Bayesian hierarchical models revealed that bird species' population trends tracked changes in forest composition. However, against our expectations, declines of birds associated with older forests accelerated. These declines are partly explained by losses of older forests due to fire on federal land and continued clearcutting elsewhere. Indeed, the NWFP anticipated that reversing declines of older forests would take time. Overall, the early-seral ecosystem area was stable, but declined in two ecoregions-the Coast Range and Cascades-along with early-seral bird populations. Although the NWFP halted clearcutting on federal land, this has so far been insufficient to reverse declines in older-forest-associated bird populations. These findings underscore the importance of continuing to prioritize older forests under the NWFP and ensuring that the recently proposed creation of early-seral ecosystems does not impede the conservation and development of older-forest structure.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Agricultura Florestal , Animais , Teorema de Bayes , Biodiversidade , Aves/fisiologia , Florestas , Genética Populacional
2.
Glob Chang Biol ; 25(4): 1247-1262, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30536531

RESUMO

A century of fire suppression across the Western United States has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here, we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree-ring growth, fire scars, and carbon isotope discrimination (Δ13 C) across a dry mixed-conifer forest landscape. Fire deficits across the study area have increased the sensitivity of leaf gas exchange to drought stress over the past >100 years. Since 1910, stand basal area in these forests has more than doubled and fire-return intervals have increased from 25 to 140 years. Meanwhile, the portion of interannual variation in tree-ring Δ13 C explained by the Palmer Drought Severity Index has more than doubled in ca. 300-500-year-old Pinus ponderosa as well as in fire-intolerant, ca. 90-190-year-old Abies grandis. Drought stress has increased in stands with a basal area of ≥25 m2 /ha in 1910, as indicated by negative temporal Δ13 C trends, whereas stands with basal area ≤25 m2 /ha in 1910, due to frequent or intense wildfire activity in decades beforehand, were initially buffered from increased drought stress and have benefited more from rising ambient carbon dioxide concentrations, [CO2 ], as demonstrated by positive temporal Δ13 C trends. Furthermore, the average Δ13 C response across all P. ponderosa since 1830 indicates that photosynthetic assimilation rates and stomatal conductance have been reduced by ~10% and ~20%, respectively, compared to expected trends due to increasing [CO2 ]. Although disturbance legacies contribute to local-scale intensity of drought stress, fire deficits have reduced drought resistance of mixed-conifer forests and made them more susceptible to challenges by pests and pathogens and other disturbances.

3.
Ecol Appl ; 28(2): 291-308, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29058765

RESUMO

Wildfires pose a unique challenge to conservation in fire-prone regions, yet few studies quantify the cumulative effects of wildfires on forest dynamics (i.e., changes in structural conditions) across landscape and regional scales. We assessed the contribution of wildfire to forest dynamics in the eastern Cascade Mountains, USA from 1985 to 2010 using imputed maps of forest structure (i.e., tree size and canopy cover) and remotely sensed burn severity maps. We addressed three questions: (1) How do dynamics differ between the region as a whole and the unburned portion of the region? (2) How do dynamics vary among vegetation zones differing in biophysical setting and historical fire frequency? (3) How have forest structural conditions changed in a network of late successional reserves (LSRs)? Wildfires affected 10% of forests in the region, but the cumulative effects at this scale were primarily slight losses of closed-canopy conditions and slight gains in open-canopy conditions. In the unburned portion of the region (the remaining 90%), closed-canopy conditions primarily increased despite other concurrent disturbances (e.g., harvest, insects). Although the effects of fire were largely dampened at the regional scale, landscape scale dynamics were far more variable. The warm ponderosa pine and cool mixed conifer zones experienced less fire than the region as a whole despite experiencing the most frequent fire historically. Open-canopy conditions increased slightly in the mixed conifer zone, but declined across the ponderosa pine zone even with wildfires. Wildfires burned 30% of the cold subalpine zone, which experienced the greatest increase in open-canopy conditions and losses of closed-canopy conditions. LSRs were more prone to wildfire than the region as a whole, and experienced slight declines in late seral conditions. Despite losses of late seral conditions, wildfires contributed to some conservation objectives by creating open habitats (e.g., sparse early seral and woodland conditions) that otherwise generally decreased in unburned landscapes despite management efforts to increase landscape diversity. This study demonstrates the potential for wildfires to contribute to regional scale conservation objectives, but implications for management and biodiversity at landscape scales vary geographically among biophysical settings, and are contingent upon historical dynamics and individual species habitat preferences.


Assuntos
Incêndios , Florestas , Estados do Pacífico , Pinus ponderosa
4.
Ecol Appl ; 27(5): 1666-1676, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28421698

RESUMO

While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests.


Assuntos
Agricultura Florestal , Florestas , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Oregon
5.
Ecol Appl ; 26(7): 2044-2059, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755743

RESUMO

Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen. Our analysis suggests that joint production possibilities under forest management regimes currently typical on industrial forest lands (e.g., 40- to 80-yr rotations with some tree retention for wildlife) represent but a small fraction of joint production outcomes possible in the region. Although the theoretical boundaries of the production possibilities sets we developed are probably unachievable in the current management environment, they arguably define the long-term potential of managing forests to produce multiple ecosystem services within and across multiple forest ownerships.


Assuntos
Carbono/fisiologia , Agricultura Florestal , Florestas , Animais , Animais Selvagens , Carbono/química , Simulação por Computador , Conservação dos Recursos Naturais , Monitoramento Ambiental , Modelos Biológicos , Oregon
6.
Ecol Appl ; 26(8): 2493-2504, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787926

RESUMO

Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements (retention forestry), including unharvested patches (or aggregates) within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized among the diverse taxa and biomes in which retention forestry is practiced. Lack of comparability in methods for sampling and analyzing responses to timber harvest and edge creation presents a challenge to synthesis. We used a consistent methodology (similarly spaced plots or traps along transects) to investigate responses of vascular plants and ground-active beetles to aggregated retention at replicate sites in each of four temperate and boreal forest types on three continents: Douglas-fir forests in Washington, USA; aspen forests in Minnesota, USA; spruce forests in Sweden; and wet eucalypt forests in Tasmania, Australia. We assessed (1) differences in local (plot-scale) species richness and composition between mature (intact) and regenerating (previously harvested) forest; (2) the lifeboating function of aggregates (capacity to retain species of unharvested forest); and whether intact forests and aggregates (3) are susceptible to edge effects and (4) influence the adjacent regenerating forest. Intact and harvested forests differed in composition but not richness of plants and beetles. The magnitude of this difference was generally similar among regions, but there was considerable heterogeneity of composition within and among replicate sites. Aggregates within harvest units were effective at lifeboating for both plant and beetle communities. Edge effects were uncommon even within the aggregates. In contrast, effects of forest influence on adjacent harvested areas were common and as strong for aggregates as for larger blocks of intact forest. Our results provide strong support for the widespread application of aggregated retention in boreal and temperate forests. The consistency of pattern in four very different regions of the world suggests that, for forest plants and beetles, responses to aggregated retention are likely to apply more widely. Our results suggest that through strategic placement of aggregates, it is possible to maintain the natural heterogeneity and biodiversity of mature forests managed for multiple objectives.


Assuntos
Biodiversidade , Besouros , Florestas , Animais , Austrália , Conservação dos Recursos Naturais , Agricultura Florestal , Minnesota , Suécia , Tasmânia , Árvores , Washington
7.
For Ecol Manage ; 366: 193-207, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27041818

RESUMO

Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales.

9.
J Immunol ; 191(4): 1509-15, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23913973

RESUMO

Cancers adopt diverse strategies to safeguard their survival, which often involve blinding or incapacitating the immune response, thereby gaining battleground advantage against the host. In immune responses against cancer, an important stimulatory lymphocyte receptor is NKG2D because the tumor-associated expression of its ligands promotes destruction of malignant cells. However, with advanced human cancers profound changes unfold wherein NKG2D and its ligands are targeted or exploited for immune evasion and suppression. This negative imprinting on the immune system may be accompanied by another functional state wherein cancer cells coopt expression of NKG2D to complement the presence of its ligands for self-stimulation of tumor growth and presumably malignant progression. This review emphasizes these conflicting functional dynamics at the immunity-cancer biology interface in humans, within an overview of the immunobiology of NKG2D and mechanisms underlying the regulation of its ligands in cancer, with reference to instructive clinical observations and translational approaches.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Comunicação Autócrina , Doenças Autoimunes/imunologia , Citocinas/fisiologia , Progressão da Doença , Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Tolerância Imunológica/imunologia , Vigilância Imunológica/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ligantes , Ativação Linfocitária , Camundongos , MicroRNAs/imunologia , Terapia de Alvo Molecular , Receptores Imunológicos/imunologia , Evasão Tumoral/imunologia
11.
Environ Manage ; 56(1): 127-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25894271

RESUMO

In recent decades, much work has been invested to describe forest allocations with high societal values. Yet, few comparative analyses have been conducted on their importance and differences across the regions of the globe. This paper introduces a conceptual framework to characterize forest priority areas defined as areas with identified higher importance of societal values in the context of multi-objective forest management. The six dimensions of the framework (designation objective, prioritization of objectives, governance, permanency, spatial scale, and management regime) characterize the general approach (integrative vs. segregative) to multi-objective forest management and explain the form and role of priority areas for providing forest services. The framework was applied in two case study regions--Pacific Northwest of USA (PNW) and Central Europe (CE). Differences between the regions exist in all dimensions. Late-successional and riparian reserves are specific to the PNW, while protection against natural hazards is specific to CE. In PNW, priority areas are mainly focused on public lands whereas in CE they include public and private lands. Priority areas in PNW are designated in a much larger spatial context and have longer time commitments. In CE, integration of management objectives on priority areas prevails, whereas in PNW priority areas tend to be designated for single objectives. In CE, greater tolerance of timber management within priority areas compared to PNW is allowed. Convergent trends in application of priority areas between the regions indicate mixing of segregation and integration approaches to forest management.


Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/organização & administração , Florestas , Europa (Continente) , Agricultura Florestal/métodos , Humanos , Noroeste dos Estados Unidos
12.
Ecol Appl ; 24(8): 2063-2077, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053913

RESUMO

Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average, demonstrating that an increase in disturbance frequency (a potential climate change effect) may considerably alter the structure, composition, and functioning of forest landscapes. Our results indicate that live tree legacies are an important component of disturbance resilience, underlining the potential of retention forestry to address challenges in ecosystem management.


Assuntos
Conservação dos Recursos Naturais/métodos , Florestas , Simulação por Computador , Monitoramento Ambiental , Modelos Biológicos , Oregon , Fatores de Tempo
13.
Ecol Appl ; 24(7): 1670-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29210230

RESUMO

Twentieth-century land management has altered the structure and composition of mixed-conifer forests and decreased their resilience to fire, drought, and insects in many parts of the Interior West. These forests occur across a wide range of environmental settings and historical disturbance regimes, so their response to land management is likely to vary across landscapes and among ecoregions. However, this variation has not been well characterized and hampers the development of appropriate management and restoration plans. We identified mixed-conifer types in central Oregon based on historical structure and composition, and successional trajectories following recent changes in land use, and evaluated how these types were distributed across environmental gradients. We used field data from 171 sites sampled across a range of environmental settings in two subregions: the eastern Cascades and the Ochoco Mountains. We identified four forest types in the eastern Cascades and four analogous types with lower densities in the Ochoco Mountains. All types historically contained ponderosa pine, but differed in the historical and modern proportions of shade-tolerant vs. shade-intolerant tree species. The Persistent Ponderosa Pine and Recent Douglas-fir types occupied relatively hot­dry environments compared to Recent Grand Fir and Persistent Shade Tolerant sites, which occupied warm­moist and cold­wet environments, respectively. Twentieth-century selective harvesting halved the density of large trees, with some variation among forest types. In contrast, the density of small trees doubled or tripled early in the 20th century, probably due to land-use change and a relatively cool, wet climate. Contrary to the common perception that dry ponderosa pine forests are the most highly departed from historical conditions, we found a greater departure in the modern composition of small trees in warm­moist environments than in either hot­dry or cold­wet environments. Furthermore, shade-tolerant trees began infilling earlier in cold­wet than in hot­dry environments and also in topographically shaded sites in the Ochoco Mountains. Our new classification could be used to prioritize management that seeks to restore structure and composition or create resilience in mixed-conifer forests of the region.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Traqueófitas/fisiologia , Incêndios Florestais , Meio Ambiente , Monitoramento Ambiental , Oregon
14.
Proc Natl Acad Sci U S A ; 108(6): 2414-9, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262824

RESUMO

γδ T cells play important roles in bridging innate and adaptive immunity, but their recognition mechanisms remain poorly understood. Human γδ T cells of the V(δ)1 subset predominate in intestinal epithelia and respond to MICA and MICB (MHC class I chain-related, A and B; MIC) self-antigens, mediating responses to tumorigenesis or viral infection. The crystal structure of an MIC-reactive V(δ)1 γδ T-cell receptor (TCR) showed expected overall structural homology to antibodies, αß, and other γδ TCRs, but complementary determining region conformations and conservation of V(δ)1 use revealed an uncharacteristically flat potential binding surface. MIC, likewise, serves as a ligand for the activating immunoreceptor natural killer group 2, D (NKG2D), also expressed on γδ T cells. Although MIC recognition drives both the TCR-dependent stimulatory and NKG2D-dependent costimulatory signals necessary for activation, interaction analyses showed that MIC binding by the two receptors was mutually exclusive. Analysis of relative binding kinetics suggested sequential recognition, defining constraints for the temporal organization of γδ T-cell/target cell interfaces.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Receptores de Antígenos de Linfócitos T gama-delta/química , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade Inata/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neoplasias/imunologia , Estrutura Quaternária de Proteína , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/química , Linfócitos T/imunologia , Viroses/imunologia
15.
Proc Natl Acad Sci U S A ; 108(10): 4081-6, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21321202

RESUMO

The stimulatory natural killer group 2 member D (NKG2D) lymphocyte receptor and its tumor-associated ligands are important mediators in the immune surveillance of cancer. With advanced human tumors, however, persistent NKG2D ligand expression may favor tumor progression. We have found that cancer cells themselves express NKG2D in complex with the DNAX-activating protein 10 (DAP10) signaling adaptor. Triggering of NKG2D on ex vivo cancer cells or on tumor lines which express only few receptor complexes activates the oncogenic PI3K-protein kinase B (PKB/AKT)-mammalian target of rapamycin (mTOR) signaling axis and downstream effectors, the ribosomal protein S6 kinase 1 (S6K1) and the translation initiation factor 4E-binding protein 1 (4E-BP1). In addition, as in lymphocytes, NKG2D ligand engagement stimulates phosphorylation of JNK and ERK in MAP kinase cascades. Consistent with these signaling activities, above-threshold expression of NKG2D-DAP10 in a ligand-bearing tumor line increases its bioenergetic metabolism and proliferation, thus suggesting functional similarity between this immunoreceptor and tumor growth factor receptors. This relationship is supported by significant correlations between percentages of cancer cells that are positive for surface NKG2D and criteria of tumor progression. Hence, in a conceptual twist, these results suggest that tumor co-option of NKG2D immunoreceptor expression may complement the presence of its ligands for stimulation of tumor growth.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK/fisiologia , Neoplasias/fisiopatologia , Transdução de Sinais , Linhagem Celular Tumoral , Progressão da Doença , Ativação Enzimática , Feminino , Humanos , Masculino , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Ecology ; 94(8): 1729-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24015517

RESUMO

Forests dominated by Douglas-fir and western hemlock in the Pacific Northwest of the United States have strongly influenced concepts and policy concerning old-growth forest conservation. Despite the attention to their old-growth characteristics, a tendency remains to view their disturbance ecology in relatively simple terms, emphasizing infrequent, stand-replacing (SR) fire and an associated linear pathway toward development of those old-growth characteristics. This study uses forest stand- and age-structure data from 124 stands in the central western Cascades of Oregon to construct a conceptual model of stand development under the mixed-severity fire regime that has operated extensively in this region. Hierarchical clustering of variables describing the age distributions of shade-intolerant and shade-tolerant species identified six groups, representing different influences of fire frequency and severity on stand development. Douglas-fir trees > 400 years old were found in 84% of stands, yet only 18% of these stands (15% overall) lack evidence of fire since the establishment of these old trees, whereas 73% of all stands show evidence of at least one non-stand-replacing (NSR) fire. Differences in fire frequency and severity have contributed to multiple development pathways and associated variation in contemporary stand structure and the successional roles of the major tree species. Shade-intolerant species form a single cohort following SR fire, or up to four cohorts per stand in response to recurring NSR fires that left living trees at densities up to 45 trees/ha. Where the surviving trees persist at densities of 60-65 trees/ha, the postfire cohort is composed only of shade-tolerant species. This study reveals that fire history and the development of old-growth forests in this region are more complex than characterized in current stand-development models, with important implications for maintaining existing old-growth forests and restoring stands subject to timber management.


Assuntos
Incêndios , Pseudotsuga/fisiologia , Tsuga/fisiologia , Modelos Biológicos , Noroeste dos Estados Unidos , Fatores de Tempo , Árvores
17.
Nature ; 447(7143): 482-6, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17495932

RESUMO

Tumour-associated ligands of the activating NKG2D (natural killer group 2, member D; also called KLRK1) receptor-which are induced by genotoxic or cellular stress-trigger activation of natural killer cells and co-stimulation of effector T cells, and may thus promote resistance to cancer. However, many progressing tumours in humans counter this anti-tumour activity by shedding the soluble major histocompatibility complex class-I-related ligand MICA, which induces internalization and degradation of NKG2D and stimulates population expansions of normally rare NKG2D+CD4+ T cells with negative regulatory functions. Here we show that on the surface of tumour cells, MICA associates with endoplasmic reticulum protein 5 (ERp5; also called PDIA6 or P5), which, similar to protein disulphide isomerase, usually assists in the folding of nascent proteins inside cells. Pharmacological inhibition of thioreductase activity and ERp5 gene silencing revealed that cell-surface ERp5 function is required for MICA shedding. ERp5 and membrane-anchored MICA form transitory mixed disulphide complexes from which soluble MICA is released after proteolytic cleavage near the cell membrane. Reduction of the seemingly inaccessible disulphide bond in the membrane-proximal alpha3 domain of MICA must involve a large conformational change that enables proteolytic cleavage. These results uncover a molecular mechanism whereby domain-specific deconstruction regulates MICA protein shedding, thereby promoting tumour immune evasion, and identify surface ERp5 as a strategic target for therapeutic intervention.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Receptores Imunológicos/metabolismo , Linhagem Celular Tumoral , Dissulfetos/química , Dissulfetos/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Humanos , Ligantes , Chaperonas Moleculares/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias/enzimologia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Células Matadoras Naturais , Especificidade por Substrato
18.
Cancer Immunol Immunother ; 61(8): 1201-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22215138

RESUMO

MICA is a ligand of the activating receptor NKG2D, expressed by NK and T cells. MICA expression is induced in cancer cells favoring their elimination by the immune system; however, many advanced tumors shed soluble MICA (sMICA), which impairs NKG2D-mediated cytotoxicity. ERp5 and GRP78 are endoplasmic reticulum-resident proteins that are translocated to the surface of epithelial tumor cells where they interact with MICA and are involved in sMICA shedding. In this study, we analyze the role of ERp5 and GRP78 in sMICA shedding in chronic lymphocytic leukemia (CLL). Immunofluorescence and flow cytometry analyses showed that ERp5 and GRP78 were significantly expressed on the surface of B cells and leukemia cells, but they were not expressed on T cells. The expression of ERp5 and GRP78 was significantly higher in leukemia cells than in B cells from controls. ERp5 and GRP78 co-localized with MICA on the surface of leukemia cells and the levels of expression of ERp5 and GRP78 correlated with the level of expression of membrane-bound MICA in CLL patients. Associated with higher expression of membrane-bound ERp5 and GRP78, serum sMICA levels were approximately threefold higher in patients than in controls. Elevated sMICA levels in CLL patients were associated with the down-modulation of NKG2D surface expression on CD8 T cells. Finally, pharmacological inhibition of B cell lines and stimulated leukemia cells showed that ERp5 activity is involved in sMICA shedding in CLL. In conclusion, these results uncover a molecular mechanism which regulates MICA protein shedding and immune evasion in CLL.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Isomerases de Dissulfetos de Proteínas/biossíntese , Receptores de Neuropeptídeos/biossíntese , Evasão Tumoral/fisiologia , Idoso , Chaperona BiP do Retículo Endoplasmático , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Masculino , Microscopia Confocal
19.
J Immunol ; 185(10): 5732-42, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20926796

RESUMO

Deficiencies of the T cell and NK cell CD3ζ signaling adapter protein in patients with cancer and autoimmune diseases are well documented, but mechanistic explanations are fragmentary. The stimulatory NKG2D receptor on T and NK cells mediates tumor immunity but can also promote local and systemic immune suppression in conditions of persistent NKG2D ligand induction that include cancer and certain autoimmune diseases. In this paper, we provide evidence that establishes a causative link between CD3ζ impairment and chronic NKG2D stimulation due to pathological ligand expression. We describe a mechanism whereby NKG2D signaling in human T and NK cells initiates Fas ligand/Fas-mediated caspase-3/-7 activation and resultant CD3ζ degradation. As a consequence, the functional capacities of the TCR, the low-affinity Fc receptor for IgG, and the NKp30 and NKp46 natural cytotoxicity receptors, which all signal through CD3ζ, are impaired. These findings are extended to ex vivo phenotypes of T and NK cells among tumor-infiltrating lymphocytes and in peripheral blood from patients with juvenile-onset lupus. Collectively, these results indicate that pathological NKG2D ligand expression leads to simultaneous impairment of multiple CD3ζ-dependent receptor functions, thus offering an explanation that may be applicable to CD3ζ deficiencies associated with diverse disease conditions.


Assuntos
Doenças Autoimunes/metabolismo , Complexo CD3/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Receptores Imunológicos/metabolismo , Doenças Autoimunes/imunologia , Caspases/metabolismo , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Immunoblotting , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Receptores Imunológicos/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
J Immunol ; 184(1): 255-67, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19949079

RESUMO

Successful establishment and persistence of adenovirus (Ad) infections are facilitated by immunosubversive functions encoded in the early transcription unit 3 (E3). The E3/19K protein has a dual role, preventing cell surface transport of MHC class I/HLA class I (MHC-I/HLA-I) Ags and the MHC-I-like molecules (MHC-I chain-related chain A and B [MICA/B]), thereby inhibiting both recognition by CD8 T cells and NK cells. Although some crucial functional elements in E3/19K have been identified, a systematic analysis of the functional importance of individual amino acids is missing. We now have substituted alanine for each of 21 aas in the luminal domain of Ad2 E3/19K conserved among Ads and investigated the effects on HLA-I downregulation by coimmunoprecipitation, pulse-chase analysis, and/or flow cytometry. Potential structural alterations were monitored using conformation-dependent E3/19K-specific mAbs. The results revealed that only a small number of mutations abrogated HLA-I complex formation (e.g., substitutions W52, M87, and W96). Mutants M87 and W96 were particularly interesting as they exhibited only minimal structural changes suggesting that these amino acids make direct contacts with HLA-I. The considerable number of substitutions with little functional defects implied that E3/19K may have additional cellular target molecules. Indeed, when assessing MICA/B cell-surface expression we found that mutation of T14 and M82 selectively compromised MICA/B downregulation with essentially no effect on HLA-I modulation. In general, downregulation of HLA-I was more severely affected than that of MICA/B; for example, substitutions W52, M87, and W96 essentially abrogated HLA-I modulation while largely retaining the ability to sequester MICA/B. Thus, distinct conserved amino acids seem preferentially important for a particular functional activity of E3/19K.


Assuntos
Infecções por Adenoviridae/metabolismo , Proteínas E3 de Adenovirus/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Infecções por Adenoviridae/genética , Proteínas E3 de Adenovirus/genética , Sequência de Aminoácidos , Sequência Conservada , Regulação para Baixo , Citometria de Fluxo , Humanos , Imunoprecipitação , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA