Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Struct Biol ; 214(3): 107876, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738335

RESUMO

Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamics (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of serotype E (BoNT/E). This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for serotype A (BoNT/A). These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use.


Assuntos
Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Toxinas Botulínicas Tipo A/química , Concentração de Íons de Hidrogênio , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
J Biol Chem ; 297(3): 100995, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302810

RESUMO

Human immunoglobulin G subclass 3 (IgG3) possesses a uniquely long hinge region that separates its Fab antigen-binding and Fc receptor-binding regions. Owing to this hinge length, the molecular structure of full-length IgG3 remains elusive, and the role of the two conserved Fc glycosylation sites are unknown. To address these issues, we subjected glycosylated and deglycosylated human myeloma IgG3 to multidisciplinary solution structure studies. Using analytical ultracentrifugation, the elongated structure of IgG3 was determined from the reduced sedimentation coefficients s020,w of 5.82 to 6.29 S for both glycosylated and deglycosylated IgG3. X-ray and neutron scattering showed that the Guinier RG values were 6.95 nm for glycosylated IgG3 and were unchanged after deglycosylation, again indicating an elongated structure. The distance distribution function P(r) showed a maximum length of 25 to 28 nm and three distinct maxima. The molecular structure of IgG3 was determined using atomistic modeling based on molecular dynamics simulations of the IgG3 hinge and Monte Carlo simulations to identify physically realistic arrangements of the Fab and Fc regions. This resulted in libraries containing 135,135 and 73,905 glycosylated and deglycosylated IgG3 structures, respectively. Comparisons with the X-ray and neutron scattering curves gave 100 best-fit models for each form of IgG3 that accounted for the experimental scattering curves. These models revealed the first molecular structures for full-length IgG3. The structures exhibited relatively restricted Fab and Fc conformations joined by an extended semirigid hinge, which explains the potent effector functions of IgG3 relative to the other subclasses IgG1, IgG2, and IgG4.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Mieloma Múltiplo/imunologia , Proteínas do Mieloma/química , Receptores Fc/química , Sequência de Aminoácidos , Cromatografia Líquida/métodos , Glicosilação , Humanos , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Ultracentrifugação/métodos , Difração de Raios X
3.
Biophys J ; 120(9): 1814-1834, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675758

RESUMO

The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16-0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1.


Assuntos
Imunoglobulina G , Receptores de IgG , Estudos Transversais , Humanos , Modelos Moleculares , Polissacarídeos , Conformação Proteica
4.
PLoS One ; 19(4): e0300964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557973

RESUMO

Human immunoglobulin G (IgG) exists as four subclasses IgG1-4, each of which has two Fab subunits joined by two hinges to a Fc subunit. IgG4 has the shortest hinge with 12 residues. The Fc subunit has two glycan chains, but the importance of glycosylation is not fully understood in IgG4. Here, to evaluate the stability and structure of non-glycosylated IgG4, we performed a multidisciplinary structural study of glycosylated and deglycosylated human IgG4 A33 for comparison with our similar study of human IgG1 A33. After deglycosylation, IgG4 was found to be monomeric by analytical ultracentrifugation; its sedimentation coefficient of 6.52 S was reduced by 0.27 S in reflection of its lower mass. X-ray and neutron solution scattering showed that the overall Guinier radius of gyration RG and its cross-sectional values after deglycosylation were almost unchanged. In the P(r) distance distribution curves, the two M1 and M2 peaks that monitor the two most common distances within IgG4 were unchanged following deglycosylation. Further insight from Monte Carlo simulations for glycosylated and deglycosylated IgG4 came from 111,382 and 117,135 possible structures respectively. Their comparison to the X-ray and neutron scattering curves identified several hundred best-fit models for both forms of IgG4. Principal component analyses showed that glycosylated and deglycosylated IgG4 exhibited different conformations from each other. Within the constraint of unchanged RG and M1-M2 values, the glycosylated IgG4 models showed more restricted Fc conformations compared to deglycosylated IgG4, but no other changes. Kratky plots supported this interpretation of greater disorder upon deglycosylation, also observed in IgG1. Overall, these more variable Fc conformations may demonstrate a generalisable impact of deglycosylation on Fc structures, but with no large conformational changes in IgG4 unlike those seen in IgG1.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Imunoglobulina G/química , Estudos Transversais , Modelos Moleculares , Fragmentos Fc das Imunoglobulinas/química
5.
Curr Opin Struct Biol ; 79: 102534, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804675

RESUMO

Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders.


Assuntos
Biologia , Proteínas , Microscopia Crioeletrônica , Proteínas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética
6.
Lupus Sci Med ; 9(1)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007979

RESUMO

OBJECTIVES: The significance of antibodies directed against activated factor X (FXa) and thrombin (Thr) in patients with SLE and/or antiphospholipid syndrome (APS) is unknown. FXa and Thr are coregulated by antithrombin (AT) and activate complement. Therefore, we studied the ability of anti activated factor X (aFXa) and/or anti-(a)Thr IgG from patients with SLE±APS to modulate complement activation. METHODS: Patients with SLE±APS were selected on the basis of known aThr and/or aFXa IgG positivity, and the effects of affinity-purified aFXa/aThr IgG on FXa and Thr-mediated C3 and C5 activation were measured ±AT. Structural analyses of FXa and Thr and AT-FXa and AT-Thr complexes were analysed in conjunction with the in vitro ability of AT to regulate aFXa-FXa and aThr-Thr-mediated C3/C5 activation. RESULTS: Using affinity-purified IgG from n=14 patients, we found that aThr IgG increased Thr-mediated activation of C3 and C5, while aFXa IgG did not increase C3 or C5 activation. Structural analysis identified potential epitopes and predicted a higher likelihood of steric hindrance of AT on FXa by aFXa IgG compared with the AT-Thr-aThr IgG complex that was confirmed by in vitro studies. Longitudinal analysis of 58 patients with SLE (±APS) did not find a significant association between positivity for aFXa or aTHr IgG and C3 levels or disease activity, although there was a trend for patients positive for aFXa IgG alone or both aFXa and aThr IgG to have lower levels of C3 compared with aThr IgG alone during clinical visits. CONCLUSIONS: We propose a novel method of complement regulation in patients with SLE±APS whereby aFXa and aThr IgG may have differential effects on complement activation.


Assuntos
Síndrome Antifosfolipídica , Lúpus Eritematoso Sistêmico , Síndrome Antifosfolipídica/complicações , Proteínas do Sistema Complemento , Fator X , Humanos , Imunoglobulina G , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Trombina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA