Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood Adv ; 8(19): 4997-5011, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39008716

RESUMO

ABSTRACT: Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2-dimensional cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3-dimensional coculture model combining human brain organoids and BCP-ALL cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids than non-ALL cells. To validate translatability between organoid coculture and in vivo murine models, we confirmed that targeting CNS leukemia-relevant pathways such as CD79a/Igα or C-X-C motif chemokine receptor 4-stromal cell-derived factor 1 reduced the invasion of BCP-ALL cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared with the noninvaded fraction revealed significant upregulation of activator protein 1 (AP-1) transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in PDX ALL cells recovered from the CNS compared with spleen blasts of mice that had received transplantation with TCF3::PBX1+ PDX cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1 gene, jun proto-oncogene, in patients initially diagnosed as CNS-positive BCP-ALL compared with CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 patients with BCP-ALL. Our results suggest CNS organoids as a novel model to investigate CNS involvement and identify the AP-1 pathway as a critical driver of CNS disease in BCP-ALL.


Assuntos
Técnicas de Cocultura , Organoides , Transdução de Sinais , Fator de Transcrição AP-1 , Humanos , Organoides/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Proto-Oncogene Mas , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças
2.
Commun Biol ; 4(1): 73, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452446

RESUMO

Central nervous system (CNS) involvement remains a challenge in the diagnosis and treatment of acute lymphoblastic leukemia (ALL). In this study, we identify CD79a (also known as Igα), a signaling component of the preB cell receptor (preBCR), to be associated with CNS-infiltration and -relapse in B-cell precursor (BCP)-ALL patients. Furthermore, we show that downregulation of CD79a hampers the engraftment of leukemia cells in different murine xenograft models, particularly in the CNS.


Assuntos
Antígenos CD79/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA