Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(8): E1026-33, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26787852

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [(64)Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [(64)Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [(18)F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation.


Assuntos
Anticorpos Antifúngicos/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Aspergillus fumigatus , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Aspergilose Pulmonar/diagnóstico por imagem , Animais , Humanos , Camundongos , Radiografia
2.
Chembiochem ; 18(19): 1923-1927, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28771896

RESUMO

Microbial transglutaminase (MTG) was stably solid-phase immobilized on glass microbeads by using a second-generation dendronized polymer. Immobilized MTG enabled the efficient generation of site-specifically conjugated proteins, including antibody fragments, as well as whole antibodies through distinct glutamines and, unprecedentedly, also through lysines with various bifunctional substrates with defined stoichiometries. With this method, we generated dual, site-specifically modified antibodies comprising a fluorescent probe and a metal chelator for radiolabeling-a strategy anticipated to design antibodies for imaging and simultaneous therapy. Furthermore, we provide evidence that immobilized MTG features higher siteselectivity than soluble MTG.


Assuntos
Anticorpos/metabolismo , Enzimas Imobilizadas/metabolismo , Streptomyces/enzimologia , Transglutaminases/metabolismo , Especificidade por Substrato
3.
Chembiochem ; 16(5): 861-7, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25688874

RESUMO

Antibody-like proteins selected from discovery platforms are preferentially functionalized by site-specific modification as this approach preserves the binding abilities and allows a side-by-side comparison of multiple conjugates. Here we present an enzymatic bioconjugation platform that targets the c-myc-tag peptide sequence (EQKLISEEDL) as a handle for the site-specific modification of antibody-like proteins. Microbial transglutaminase (MTGase) was exploited to form a stable isopeptide bond between the glutamine on the c-myc-tag and various primary-amine-functionalized substrates. We attached eight different functionalities to a c-myc-tagged antibody fragment and used these bioconjugates for downstream applications such as protein multimerization, immobilization on surfaces, fluorescence microscopy, fluorescence-activated cell sorting, and in vivo nuclear imaging. The results demonstrate the versatility of our conjugation strategy for transforming a c-myc-tagged protein into any desired probe.


Assuntos
Anticorpos/química , Anticorpos/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Recombinantes/metabolismo
4.
Chembiochem ; 15(10): 1481-6, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24910211

RESUMO

A straightforward strategy is presented for the site-specific incorporation of fluorophores or reactive probes into the extracellular matrix (ECM) protein fibronectin (Fn) by using the enzyme-catalyzed transamidation by activated factor XIII. Characterization by SDS-PAGE, western blotting, absorption measurements, mass spectrometry, and stepwise photobleaching for labeling quantification at the single-molecule level showed that the labeling was efficient and restricted to the N-terminal tails. The introduction of labels did not interfere with Fn fibrillogenesis, as verified by the incorporation of fluorescently labeled Fn into ECM and manually pulled Fn fibers. Site-specific incorporation of an azide was used to create a template for bioorthogonal click chemistry reactions in a second bioconjugation step, thus offering versatile modification and application possibilities in the context of matrix biology and tissue engineering.


Assuntos
Fator XIIIa/metabolismo , Fibronectinas/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Sequência de Aminoácidos , Azidas/química , Células Cultivadas , Química Click , Desenho de Equipamento , Fibroblastos/citologia , Fibronectinas/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Microscopia de Fluorescência/instrumentação , Sondas Moleculares/metabolismo , Dados de Sequência Molecular , Fotodegradação
5.
ACS Nano ; 15(7): 12161-12170, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34184536

RESUMO

The precise spatial localization of proteins in situ by super-resolution microscopy (SRM) demands their targeted labeling. Positioning reporter molecules as close as possible to the target remains a challenge in primary cells or tissues from patients that cannot be easily genetically modified. Indirect immunolabeling introduces relatively large linkage errors, whereas site-specific and stoichiometric labeling of primary antibodies relies on elaborate chemistries. In this study, we developed a simple two-step protocol to site-specifically attach reporters such as fluorophores or DNA handles to several immunoglobulin G (IgG) antibodies from different animal species and benchmarked the performance of these conjugates for 3D STORM (stochastic optical reconstruction microscopy) and DNA-PAINT (point accumulation in nanoscale topography). Glutamine labeling was restricted to two sites per IgG and saturable by exploiting microbial transglutaminase after removal of N-linked glycans. Precision measurements of 3D microtubule labeling shell dimensions in cell lines and human platelets showed that linkage errors from primary and secondary antibodies did not add up. Monte Carlo simulations of a geometric microtubule-IgG model were in quantitative agreement with STORM results. The simulations revealed that the flexible hinge between Fab and Fc segments effectively randomized the direction of the secondary antibody, while the restricted binding orientation of the primary antibody's Fab fragment accounted for most of the systematic offset between the reporter and α-tubulin. DNA-PAINT surprisingly yielded larger linkage errors than STORM, indicating unphysiological conformations of DNA-labeled IgGs. In summary, our cost-effective protocol for generating well-characterized primary IgG conjugates offers an easy route to precise SRM measurements in arbitrary fixed samples.


Assuntos
DNA , Imunoglobulina G , Animais , Humanos , Microscopia de Fluorescência/métodos , DNA/química
6.
Theranostics ; 7(14): 3398-3414, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912884

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of hematological malignancy or bone marrow transplant patients caused by the ubiquitous environmental fungus Aspergillus fumigatus. Current diagnostic tests for the disease lack sensitivity as well as specificity, and culture of the fungus from invasive lung biopsy, considered the gold standard for IPA detection, is slow and often not possible in critically ill patients. In a previous study, we reported the development of a novel non-invasive procedure for IPA diagnosis based on antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI) using a [64Cu]DOTA-labeled mouse monoclonal antibody (mAb), mJF5, specific to Aspergillus. To enable translation of the tracer to the clinical setting, we report here the development of a humanised version of the antibody (hJF5), and pre-clinical imaging of lung infection using a [64Cu]NODAGA-hJF5 tracer. The humanised antibody tracer shows a significant increase in in vivo biodistribution in A. fumigatus infected lungs compared to its radiolabeled murine counterpart [64Cu]NODAGA-mJF5. Using reverse genetics of the pathogen, we show that the antibody binds to the antigenic determinant ß1,5-galactofuranose (Galf) present in a diagnostic mannoprotein antigen released by the pathogen during invasive growth in the lung. The absence of the epitope Galf in mammalian carbohydrates, coupled with the enhanced imaging capabilities of the hJF5 antibody, means that the [64Cu]NODAGA-hJF5 tracer developed here represents an ideal candidate for the diagnosis of IPA and translation to the clinical setting.


Assuntos
Anticorpos Antifúngicos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Aspergilose/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/imunologia , Acetatos/química , Animais , Aspergillus nidulans/imunologia , Aspergillus nidulans/patogenicidade , Células CHO , Radioisótopos de Cobre/química , Cricetinae , Cricetulus , Feminino , Compostos Heterocíclicos com 1 Anel/química , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Compostos Radiofarmacêuticos/química
7.
Biomater Sci ; 3(1): 94-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26214193

RESUMO

We present a generic patterning process by which biomolecules in a passivated background are patterned directly from physiological buffer to microfabricated surfaces without the need for further processing. First, nitrodopamine-mPEG is self-assembled to selectively render TiO2 patterns non-fouling to biomolecule adsorption on hydrophilic and adhesive glass surfaces. After the controlled TiO2 passivation, the biomolecules can be directly adsorbed from solution in a single step creating large scale micropatterned and highly homogeneous arrays of biomolecules with very high pattern definition. We demonstrate the formation of fluid supported lipid bilayers (SLBs) down to the single µm-level limited only by the photolithographic process. Non-specific adsorption of lipid vesicles to the TiO2 background was found to be almost completely suppressed. The SLB patterns can be further selectively functionalized with retained mobility, which we demonstrate through biotin-streptavidin coupling. We envision this single step patterning approach to be very beneficial for membrane-based biosensors and for pattering of cells on a passivated background with complex, sub-cellular geometries; in each application the adherent areas have a tunable mobility of interaction sites controlled by the fluidity of the membrane.


Assuntos
Dopamina/análogos & derivados , Bicamadas Lipídicas/química , Proteínas/química , Titânio/química , Adsorção , Técnicas Biossensoriais , Dopamina/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas/metabolismo , Propriedades de Superfície
8.
Nanoscale ; 5(15): 6758-66, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23685735

RESUMO

Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications.


Assuntos
Hepatócitos/metabolismo , Hidrogéis , Macrófagos/metabolismo , Mioblastos/metabolismo , Álcool de Polivinil , Animais , Células Hep G2 , Hepatócitos/citologia , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Indóis/síntese química , Indóis/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Macrófagos/citologia , Camundongos , Mioblastos/citologia , Polilisina/química , Polilisina/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA