Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabet Med ; : e15408, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995865

RESUMO

BACKGROUND/AIMS: As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS: To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS: Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS: Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.

2.
Cell Physiol Biochem ; 45(6): 2369-2388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587265

RESUMO

BACKGROUND/AIMS: Changes in cell-to-cell communication have been linked to several secondary complications of diabetes, but the mechanism by which connexins affect disease progression in the kidney is poorly understood. This study examines a role for glucose-evoked changes in the beta1 isoform of transforming growth factor (TGFß1), on connexin expression, gap-junction mediated intercellular communication (GJIC) and hemi-channel ATP release from tubular epithelial cells of the proximal renal nephron. METHODS: Biopsy material from patients with and without diabetic nephropathy was stained for connexin-26 (CX26) and connexin-43 (CX43). Changes in expression were corroborated by immunoblot analysis in human primary proximal tubule epithelial cells (hPTECs) and model epithelial cells from human renal proximal tubules (HK2) cultured in either low glucose (5mmol/L) ± TGFß1 (2-10ng/ml) or high glucose (25mmol/L) for 48h or 7days. Secretion of the cytokine was determined by ELISA. Paired whole cell patch clamp recordings were used to measure junctional conductance in control versus TGFß1 treated (10ng/ml) HK2 cells, with carboxyfluorescein uptake and ATP-biosensing assessing hemi-channel function. A downstream role for ATP in mediating the effects of TGF-ß1 on connexin mediated cell communication was assessed by incubating cells with ATPγS (1-100µM) or TGF-ß1 +/- apyrase (5 Units/ml). Implications of ATP release were measured through immunoblot analysis of interleukin 6 (IL-6) and fibronectin expression. RESULTS: Biopsy material from patients with diabetic nephropathy exhibited increased tubular expression of CX26 and CX43 (P<0.01, n=10), data corroborated in HK2 and hPTEC cells cultured in TGFß1 (10ng/ml) for 7days (P<0.001, n=3). High glucose significantly increased TGFß1 secretion from tubular epithelial cells (P<0.001, n=3). The cytokine (10ng/ml) reduced junctional conductance between HK2 cells from 4.5±1.3nS in control to 1.15±0.9nS following 48h TGFß1 and to 0.42±0.2nS after 7days TGFß1 incubation (P<0.05, n=5). Acute (48h) and chronic (7day) challenge with TGFß1 produced a carbenoxolone (200µM)-sensitive increase in carboxyfluorescein loading, matched by an increase in ATP release from 0.29±0.06µM in control to 1.99±0.47µM after 48hr incubation with TGFß1 (10ng/ml; P<0.05, n=3). TGF-ß1 (2-10ng/ml) and ATPγs (1-100µM) increased expression of IL-6 (P<0.001 n=3) and fibronectin (P<0.01 n=3). The effect of TGF-ß1 on IL-6 and fibronectin expression was partially blunted when preincubated with apyrase (n=3). CONCLUSION: These data suggest that chronic exposure to glucose-evoked TGFß1 induce an increase in CX26 and CX43 expression, consistent with changes observed in tubular epithelia from patients with diabetic nephropathy. Despite increased connexin expression, direct GJIC communication decreases, whilst hemichannel expression/function and paracrine release of ATP increases, changes that trigger increased levels of expression of interleukin 6 and fibronectin. Linked to inflammation and fibrosis, local increases in purinergic signals may exacerbate disease progression and highlight connexin mediated cell communication as a future therapeutic target for diabetic nephropathy.


Assuntos
Comunicação Celular , Conexina 26/análise , Conexina 43/análise , Nefropatias Diabéticas/patologia , Túbulos Renais Proximais/patologia , Fator de Crescimento Transformador beta1/análise , Linhagem Celular , Células Cultivadas , Conexina 26/metabolismo , Conexina 43/metabolismo , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA