Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(24): 7022-7, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25919418

RESUMO

Four different formats of bispecific antibodies (bsAbs) were generated that consist of anti-Her2 IgG or Fab site-specifically conjugated to anti-CD3 Fab using the genetically encoded noncanonical amino acid. These bsAbs varied in valency or in the presence or absence of an Fc domain. Different valencies did not significantly affect antitumor efficacy, whereas the presence of an Fc domain enhanced cytotoxic activity, but triggered antigen-independent T-cell activation. We show that the bsAbs can efficiently redirect T cells to kill all Her2 expressing cancer cells, including Her2 1+ cancers, both in vitro and in rodent xenograft models. This work increases our understanding of the structural features that affect bsAb activity, and underscores the potential of bsAbs as a promising therapeutic option for breast cancer patients with low or heterogeneous Her2 expression.


Assuntos
Anticorpos Biespecíficos/química , Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Células Jurkat , Leucócitos Mononucleares/imunologia , Camundongos , Receptor ErbB-2/imunologia , Receptores Fc/química , Receptores Fc/metabolismo , Linfócitos T/imunologia , Trastuzumab/química , Trastuzumab/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Angew Chem Int Ed Engl ; 53(44): 11863-7, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25213874

RESUMO

A chemically defined anti-CXCR4-auristatin antibody-drug conjugate (ADC) was synthesized that selectively eliminates tumor cells overexpressing the CXCR4 receptor. The unnatural amino acid p-acetylphenylalanine (pAcF) was site-specifically incorporated into an anti-CXCR4 immunoglobulin G (IgG) and conjugated to an auristatin through a stable, non-cleavable oxime linkage to afford a chemically homogeneous ADC. The full-length anti-CXCR4 ADC was selectively cytotoxic to CXCR4(+) cancer cells in vitro (half maximal effective concentration (EC50 )≈80-100 pM). Moreover, the anti-CXCR4 ADC eliminated pulmonary lesions from human osteosarcoma cells in a lung-seeding tumor model in mice. No significant overt toxicity was observed but there was a modest decrease in the bone-marrow-derived CXCR4(+) cell population. Because CXCR4 is highly expressed in a majority of metastatic cancers, a CXCR4-auristatin ADC may be useful for the treatment of a variety of metastatic malignancies.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/química , Imunoconjugados/química , Imunoterapia/métodos , Receptores CXCR4/química , Linhagem Celular Tumoral , Humanos
3.
Environ Microbiol ; 11(11): 2863-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19659499

RESUMO

Roseophage SIO1 is a lytic marine phage that infects Roseobacter SIO67, a member of the Roseobacter clade of near-shore alphaproteobacteria. Roseophage SIO1 was first isolated in 1989 and sequenced in 2000. We have re-sequenced and re-annotated the original isolate. Our current annotation could only assign functions to seven additional open reading frames, indicating that, despite the advances in bioinformatics tools and increased genomic resources, we are still far from being able to translate phage genomic sequences into biological functions. In 2001, we isolated four new strains of Roseophage SIO1 from California near-shore locations. The genomes of all four were sequenced and compared against the original Roseophage SIO1 isolated in 1989. A high degree of conservation was evident across all five genomes; comparisons at the nucleotide level yielded an average 97% identity. The observed differences were clustered in protein-encoding regions and were mostly synonymous. The one strain that was found to possess an expanded host range also showed notable changes in putative tail protein-coding regions. Despite the possibly rapid evolution of phage and the mostly uncharacterized diversity found in viral metagenomic data sets, these findings indicate that viral genomes such as the genome of SIO1-like Roseophages can be stably maintained over ecologically significant time and distance (i.e. over a decade and approximately 50 km).


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Roseobacter/virologia , California , Sequência Conservada , Ordem dos Genes , Filogenia , Água do Mar/microbiologia , Água do Mar/virologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
4.
ISME J ; 4(6): 739-51, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20147985

RESUMO

The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral-microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Ecossistema , Metagenoma , Vírus/crescimento & desenvolvimento , Microbiologia da Água , Archaea/genética , Bactérias/genética , DNA Arqueal/genética , DNA Bacteriano/genética , DNA Viral/genética , Água Doce/microbiologia , Biblioteca Genômica , Genótipo , Salinidade , Fatores de Tempo , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA