Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593940

RESUMO

Despite advancements in prosthetic technologies, patients with amputation today suffer great diminution in mobility and quality of life. We have developed a modified below-knee amputation (BKA) procedure that incorporates agonist-antagonist myoneural interfaces (AMIs), which surgically preserve and couple agonist-antagonist muscle pairs for the subtalar and ankle joints. AMIs are designed to restore physiological neuromuscular dynamics, enable bidirectional neural signaling, and offer greater neuroprosthetic controllability compared to traditional amputation techniques. In this prospective, nonrandomized, unmasked study design, 15 subjects with AMI below-knee amputation (AB) were matched with 7 subjects who underwent a traditional below-knee amputation (TB). AB subjects demonstrated significantly greater control of their residual limb musculature, production of more differentiable efferent control signals, and greater precision of movement compared to TB subjects (P < 0.008). This may be due to the presence of greater proprioceptive inputs facilitated by the significantly higher fascicle strains resulting from coordinated muscle excursion in AB subjects (P < 0.05). AB subjects reported significantly greater phantom range of motion postamputation (AB: 12.47 ± 2.41, TB: 10.14 ± 1.45 degrees) when compared to TB subjects (P < 0.05). Furthermore, AB subjects also reported less pain (12.25 ± 5.37) than TB subjects (17.29 ± 10.22) and a significant reduction when compared to their preoperative baseline (P < 0.05). Compared with traditional amputation, the construction of AMIs during amputation confers the benefits of enhanced physiological neuromuscular dynamics, proprioception, and phantom limb perception. Subjects' activation of the AMIs produces more differentiable electromyography (EMG) for myoelectric prosthesis control and demonstrates more positive clinical outcomes.


Assuntos
Amputação Cirúrgica/métodos , Membros Artificiais , Dor/prevenção & controle , Desenho de Prótese/métodos , Implantação de Prótese/reabilitação , Amplitude de Movimento Articular/fisiologia , Adulto , Traumatismos do Tornozelo/cirurgia , Articulação do Tornozelo/inervação , Articulação do Tornozelo/cirurgia , Eletromiografia , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/cirurgia , Membro Fantasma/reabilitação , Propriocepção/fisiologia , Estudos Prospectivos , Qualidade de Vida/psicologia , Articulação Talocalcânea/lesões , Articulação Talocalcânea/inervação , Articulação Talocalcânea/cirurgia , Transmissão Sináptica/fisiologia
2.
Ann Surg ; 273(2): 269-279, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324689

RESUMO

BACKGROUND: Recent progress in biomechatronics and vascularized composite allotransplantation have occurred in the absence of congruent advancements in the surgical approaches generally utilized for limb amputation. Consideration of these advances, as well as of both novel and time-honored reconstructive surgical techniques, argues for a fundamental reframing of the way in which amputation procedures should be performed. METHODS: We review sentinel developments in external prosthetic limb technology and limb transplantation, in addition to standard and emerging reconstructive surgical techniques relevant to limb modification, and then propose a new paradigm for limb amputation. RESULTS: An approach to limb amputation based on the availability of native tissues is proposed, with the intent of maximizing limb function, limiting neuropathic pain, restoring limb perception/proprioception and mitigating limb atrophy. CONCLUSIONS: We propose a reinvention of the manner in which limb amputations are performed, framed in the context of time-tested reconstructive techniques, as well as novel, state-of-the-art surgical procedures. Implementation of the proposed techniques in the acute setting has the potential to elevate advanced limb replacement strategies to a clinical solution that perhaps exceeds what is possible through traditional surgical approaches to limb salvage. We therefore argue that amputation, performed with the intent of optimizing the residuum for interaction with either a bionic or a transplanted limb, should be viewed not as a surgical failure, but as an alternative form of limb reconstruction.


Assuntos
Amputação Cirúrgica , Membros Artificiais , Salvamento de Membro , Alotransplante de Tecidos Compostos Vascularizados , Humanos
3.
Adv Funct Mater ; 31(44)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34720792

RESUMO

Implantable and ingestible biomedical electronic devices can be useful tools for detecting physiological and pathophysiological signals, and providing treatments that cannot be done externally. However, one major challenge in the development of these devices is the limited lifetime of their power sources. The state-of-the-art of powering technologies for implantable and ingestible electronics is reviewed here. The structure and power requirements of implantable and ingestible biomedical electronics are described to guide the development of powering technologies. These powering technologies include novel batteries that can be used as both power sources and for energy storage, devices that can harvest energy from the human body, and devices that can receive and operate with energy transferred from exogenous sources. Furthermore, potential sources of mechanical, chemical, and electromagnetic energy present around common target locations of implantable and ingestible electronics are thoroughly analyzed; energy harvesting and transfer methods befitting each energy source are also discussed. Developing power sources that are safe, compact, and have high volumetric energy densities is essential for realizing long-term in-body biomedical electronics and for enabling a new era of personalized healthcare.

4.
J Neuroeng Rehabil ; 17(1): 118, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843093

RESUMO

BACKGROUND: Functional magnetic resonance imaging (fMRI) provides critical information about the neurophysiology of the central nervous systems (CNS), posing clinical significance for the understanding of neuropathologies and advancement of rehabilitation. Typical fMRI study designs include subjects performing designed motor tasks within specific time frames, in which fMRI data are then analyzed by assuming that observed functional brain activations correspond to the designed tasks. Therefore, developing MRI-compatible sensors that enable real-time monitoring of subjects' task performances would allow for highly accurate fMRI studies. While several MRI-compatible sensors have been developed, none have demonstrated the ability to measure individual muscle fascicle length during fMRI, which could help uncover the complexities of the peripheral and central nervous systems. Furthermore, previous MRI-compatible sensors have been focused on biologically intact populations, limiting accessibility to populations such as those who have undergone amputation. METHODS: We propose a lightweight, low-cost, skin impedance-insensitive pressure-based muscular motion sensor (pMMS) that provides reliable estimates of muscle fascicle length and joint angle. The muscular motions are captured through measured pressure changes in an air pocket wrapped around the muscle of interest, corresponding to its muscular motion. The muscle fascicle length and joint angle are then estimated from the measured pressure changes based on the proposed muscle-skin-sensor interaction dynamics. Furthermore, we explore an integration method of multiple pMMS systems to expand the sensor capacity of estimating muscle fascicle length and joint angle. Ultrasound imaging paired with joint encoder measurements are utilized to assess pMMS estimation accuracy of muscle fascicle length in the tibialis anterior (TA) and ankle joint angle, respectively, of five biologically intact subjects. RESULTS: We found that a single pMMS sufficiently provides robust and accurate estimations of TA muscle fascicle length and ankle joint angle during dorsiflexion at various speeds and amplitudes. Further, differential pressure readings from two pMMSs, in which each pMMS were proximally and distally placed, were able to mitigate errors due to perturbations, expanding pMMS capacity for muscle fascicle length and ankle joint angle estimation during the full range of plantar flexion and dorsiflexion. CONCLUSIONS: Our results from this study demonstrate the feasibility of the pMMS system to further be incorporated in fMRI settings for real-time monitoring of subjects' task performances, allowing sophisticated fMRI study designs.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Músculo Esquelético/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Humanos , Masculino
6.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678294

RESUMO

Chemotherapeutic dosing, is largely based on the tolerance levels of toxicity today. Molecular imaging strategies can be leveraged to quantify DNA cytotoxicity and thereby serve as a theranostic tool to improve the efficacy of treatments. Methoxyamine-modified cyanine-7 (Cy7MX) is a molecular probe which binds to apurinic/apyrimidinic (AP)-sites, inhibiting DNA-repair mechanisms implicated by cytotoxic chemotherapies. Herein, we loaded (Cy7MX) onto polyethylene glycol-coated gold nanoparticles (AuNP) to selectively and stably deliver the molecular probe intravenously to tumors. We optimized the properties of Cy7MX-loaded AuNPs using optical spectroscopy and tested the delivery mechanism and binding affinity using the DLD1 colon cancer cell line in vitro. A 10:1 ratio of Cy7MX-AuNPs demonstrated a strong AP site-specific binding and the cumulative release profile demonstrated 97% release within 12 min from a polar to a nonpolar environment. We further demonstrated targeted delivery using imaging and biodistribution studies in vivo in an xenografted mouse model. This work lays a foundation for the development of real-time molecular imaging techniques that are poised to yield quantitative measures of the efficacy and temporal profile of cytotoxic chemotherapies.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Ouro/química , Nanopartículas Metálicas/química , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
7.
J Emerg Nurs ; 48(3): 250-252, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35526873
9.
Chemistry ; 20(26): 8030-9, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24861009

RESUMO

The use of macrocyclic molecules for both imaging and photodynamic therapy (PDT) has proven to be a powerful method for assessing and treating diseases, respectively. However, many potential candidates for these applications rely on rigid organic structures which are hydrophobic and thus lead to possible aggregation in aqueous solutions such as blood. Here, we describe the discovery of noncovalent J-aggregate dimers of the asymmetrically, axially modified silicon phthalocyanine 4 (Pc 4) in aqueous solutions through steady-state and time-resolved spectroscopy. Remarkably, the monomer-dimer equilibrium is dictated by water content and pH, with free monomers resulting in favorable solvation conditions even after formation of the dimer complex. This work sheds light on previous observations of Pc 4 behavior in cells during PDT, and can further elucidate the structure-activity relationship of these important molecules.


Assuntos
Indóis/química , Compostos de Organossilício/química , Fotoquimioterapia/métodos , Interações Hidrofóbicas e Hidrofílicas , Relação Estrutura-Atividade
10.
Sci Rep ; 14(1): 13456, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862558

RESUMO

The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.


Assuntos
Amputação Cirúrgica , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Descanso/fisiologia , Tíbia/cirurgia , Tíbia/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurofisiologia/métodos , Amputados/reabilitação , Mapeamento Encefálico/métodos
11.
Adv Healthc Mater ; : e2400272, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678431

RESUMO

Image-guided tumor ablative therapies are mainstay cancer treatment options but often require intra-procedural protective tissue displacement to reduce the risk of collateral damage to neighboring organs. Standard of care strategies, such as hydrodissection (fluidic injection), are limited by rapid diffusion of fluid and poor retention time, risking injury to adjacent organs, increasing cancer recurrence rates from incomplete tumor ablations, and limiting patient qualification. Herein, a "gel-dissection" technique is developed, leveraging injectable hydrogels for longer-lasting, shapeable, and transient tissue separation to empower clinicans with improved ablation operation windows and greater control. A rheological model is designed to understand and tune gel-dissection parameters. In swine models, gel-dissection achieves 24 times longer-lasting tissue separation dynamics compared to saline, with 40% less injected volume. Gel-dissection achieves anti-dependent dissection between free-floating organs in the peritoneal cavity and clinically significant thermal protection, with the potential to expand minimally invasive therapeutic techniques, especially across locoregional therapies including radiation, cryoablation, endoscopy, and surgery.

12.
Sci Robot ; 9(87): eadh8170, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416855

RESUMO

Postoperative ileus (POI) is the leading cause of prolonged hospital stay after abdominal surgery and is characterized by a functional paralysis of the digestive tract, leading to symptoms such as constipation, vomiting, and functional obstruction. Current treatments are mainly supportive and inefficacious and yield acute side effects. Although electrical stimulation studies have demonstrated encouraging pacing and entraining of the intestinal slow waves, no devices exist today to enable targeted intestinal reanimation. Here, we developed an ingestible self-propelling device for intestinal reanimation (INSPIRE) capable of restoring peristalsis through luminal electrical stimulation. Optimizing mechanical, material, and electrical design parameters, we validated optimal deployment, intestinal electrical luminal contact, self-propelling capability, safety, and degradation of the device in ex vivo and in vivo swine models. We compared the INSPIRE's effect on motility in models of normal and depressed motility and chemically induced ileus. Intestinal contraction improved by 44% in anesthetized animals and up to 140% in chemically induced ileus cases. In addition, passage time decreased from, on average, 8.6 days in controls to 2.5 days with the INSPIRE device, demonstrating significant improvement in motility. Luminal electrical stimulation of the intestine via the INSPIRE efficaciously restored peristaltic activity. This noninvasive option offers a promising solution for the treatment of ileus and other motility disorders.


Assuntos
Íleus , Robótica , Animais , Suínos , Motilidade Gastrointestinal/fisiologia , Íleus/terapia , Íleus/etiologia , Intestinos , Complicações Pós-Operatórias
13.
Neurosurgery ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904388

RESUMO

The emerging field of cancer neuroscience reshapes our understanding of the intricate relationship between the nervous system and cancer biology; this new paradigm is likely to fundamentally change and advance neuro-oncological care. The profound interplay between cancers and the nervous system is reciprocal: Cancer growth can be induced and regulated by the nervous system; conversely, tumors can themselves alter the nervous system. Such crosstalk between cancer cells and the nervous system is evident in both the peripheral and central nervous systems. Recent advances have uncovered numerous direct neuron-cancer interactions at glioma-neuronal synapses, paracrine mechanisms within the tumor microenvironment, and indirect neuroimmune interactions. Neurosurgeons have historically played a central role in neuro-oncological care, and as the field of cancer neuroscience is becoming increasingly established, the role of neurosurgical intervention is becoming clearer. Examples include peripheral denervation procedures, delineation of neuron-glioma networks, development of neuroprostheses, neuromodulatory procedures, and advanced local delivery systems. The present review seeks to highlight key cancer neuroscience mechanisms with neurosurgical implications and outline the future role of neurosurgical intervention in cancer neuroscience.

14.
Med ; 5(7): 780-796.e10, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38663403

RESUMO

BACKGROUND: Dosing of chemotherapies is often calculated according to the weight and/or height of the patient or equations derived from these, such as body surface area (BSA). Such calculations fail to capture intra- and interindividual pharmacokinetic variation, which can lead to order of magnitude variations in systemic chemotherapy levels and thus under- or overdosing of patients. METHODS: We designed and developed a closed-loop drug delivery system that can dynamically adjust its infusion rate to the patient to reach and maintain the drug's target concentration, regardless of a patient's pharmacokinetics (PK). FINDINGS: We demonstrate that closed-loop automated drug infusion regulator (CLAUDIA) can control the concentration of 5-fluorouracil (5-FU) in rabbits according to a range of concentration-time profiles (which could be useful in chronomodulated chemotherapy) and over a range of PK conditions that mimic the PK variability observed clinically. In one set of experiments, BSA-based dosing resulted in a concentration 7 times above the target range, while CLAUDIA keeps the concentration of 5-FU in or near the targeted range. Further, we demonstrate that CLAUDIA is cost effective compared to BSA-based dosing. CONCLUSIONS: We anticipate that CLAUDIA could be rapidly translated to the clinic to enable physicians to control the plasma concentration of chemotherapy in their patients. FUNDING: This work was supported by MIT's Karl van Tassel (1925) Career Development Professorship and Department of Mechanical Engineering and the Bridge Project, a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center.


Assuntos
Sistemas de Liberação de Medicamentos , Fluoruracila , Medicina de Precisão , Fluoruracila/farmacocinética , Fluoruracila/administração & dosagem , Coelhos , Animais , Sistemas de Liberação de Medicamentos/métodos , Medicina de Precisão/métodos , Humanos , Infusões Intravenosas , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/administração & dosagem
15.
Biomaterials ; 302: 122317, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717406

RESUMO

Damage that affects large volumes of skeletal muscle tissue can severely impact health, mobility, and quality-of-life. Efforts to restore muscle function by implanting tissue engineered muscle grafts at the site of damage have demonstrated limited restoration of force production. Various forms of mechanical and biochemical stimulation have been shown to have a potentially beneficial impact on graft maturation, vascularization, and innervation. However, these approaches yield unpredictable and incomplete recovery of functional mobility. Here we show that targeted actuation of implanted grafts, via non-invasive transcutaneous light stimulation of optogenetic engineered muscle, restores motor function to levels similar to healthy mice 2 weeks post-injury. Furthermore, we conduct phosphoproteomic analysis of actuated engineered muscle in vivo and in vitro to show that repeated muscle contraction alters signaling pathways that play key roles in skeletal muscle contractility, adaptation to injury, neurite growth, neuromuscular synapse formation, angiogenesis, and cytoskeletal remodeling. Our study uncovers changes in phosphorylation of several proteins previously unreported in the context of muscle contraction, revealing promising mechanisms for leveraging actuated muscle grafts to restore mobility after volumetric muscle loss.


Assuntos
Doenças Musculares , Engenharia Tecidual , Camundongos , Animais , Músculo Esquelético , Contração Muscular/fisiologia , Próteses e Implantes
16.
Nat Electron ; 6(3): 242-256, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37745833

RESUMO

Localization and tracking of ingestible microdevices in the gastrointestinal (GI) tract is valuable for the diagnosis and treatment of GI disorders. Such systems require a large field-of-view of tracking, high spatiotemporal resolution, wirelessly operated microdevices and a non-obstructive field generator that is safe to use in practical settings. However, the capabilities of current systems remain limited. Here, we report three dimensional (3D) localization and tracking of wireless ingestible microdevices in the GI tract of large animals in real time and with millimetre-scale resolution. This is achieved by generating 3D magnetic field gradients in the GI field-of-view using high-efficiency planar electromagnetic coils that encode each spatial point with a distinct magnetic field magnitude. The field magnitude is measured and transmitted by the miniaturized, low-power and wireless microdevices to decode their location as they travel through the GI tract. This system could be useful for quantitative assessment of the GI transit-time, precision targeting of therapeutic interventions and minimally invasive procedures.

17.
Stem Cell Res Ther ; 14(1): 232, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667277

RESUMO

BACKGROUND: Enteric neuropathies, which result from abnormalities of the enteric nervous system, are associated with significant morbidity and high health-care costs, but current treatments are unsatisfactory. Cell-based therapy offers an innovative approach to replace the absent or abnormal enteric neurons and thereby restore gut function. METHODS: Enteric neuronal stem cells (ENSCs) were isolated from the gastrointestinal tract of Wnt1-Cre;R26tdTomato mice and generated neurospheres (NS). NS transplants were performed via injection into the mid-colon mesenchyme of nNOS-/- mouse, a model of colonic dysmotility, using either 1 (n = 12) or 3 (n = 12) injections (30 NS per injection) targeted longitudinally 1-2 mm apart. Functional outcomes were assessed up to 6 weeks later using electromyography (EMG), electrical field stimulation (EFS), optogenetics, and by measuring colorectal motility. RESULTS: Transplanted ENSCs formed nitrergic neurons in the nNOS-/- recipient colon. Multiple injections of ENSCs resulted in a significantly larger area of coverage compared to single injection alone and were associated with a marked improvement in colonic function, demonstrated by (1) increased colonic muscle activity by EMG recording, (2) faster rectal bead expulsion, and (3) increased fecal pellet output in vivo. Organ bath studies revealed direct neuromuscular communication by optogenetic stimulation of channelrhodopsin-expressing ENSCs and restoration of smooth muscle relaxation in response to EFS. CONCLUSIONS: These results demonstrate that transplanted ENSCs can form effective neuromuscular connections and improve colonic motor function in a model of colonic dysmotility, and additionally reveal that multiple sites of cell delivery led to an improved response, paving the way for optimized clinical trial design.


Assuntos
Músculo Liso , Neurônios , Animais , Camundongos , Terapia Baseada em Transplante de Células e Tecidos , Colo , Estimulação Elétrica
18.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503258

RESUMO

Effective therapies for obesity either require invasive surgical or endoscopic interventions or high patient adherence, making it challenging for the nearly 42% of American adults who suffer from obesity to effectively manage their disease. Gastric mechanoreceptors sense distension of the stomach and perform volume-dependent vagal signaling to initiate the gastric phase and influence satiety. In this study, we developed a new luminal stimulation modality to specifically activate these gastric stretch receptors to elicit a vagal afferent response commensurate with mechanical distension. Here we developed the Vibrating Ingestible BioElectronic Stimulator (VIBES) pill - an ingestible device that performs luminal vibratory stimulation to activate mechanoreceptors and stroke mucosal receptors, which induces serotonin release as well as yields a hormonal metabolic response commensurate with a fed state. We evaluated VIBES across 108 meals in swine which consistently led to diminished food intake (~40%, p< 0.0001) and minimized the weight gain rate (p< 0.03) as compared to untreated controls. Application of mechanoreceptor biology could transform our capacity to help patients suffering from nutritional disorders.

19.
Med ; 4(8): 541-553.e5, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339635

RESUMO

BACKGROUND: While peripheral nerve stimulation (PNS) has shown promise in applications ranging from peripheral nerve regeneration to therapeutic organ stimulation, clinical implementation has been impeded by various technological limitations, including surgical placement, lead migration, and atraumatic removal. METHODS: We describe the design and validation of a platform technology for nerve regeneration and interfacing: adaptive, conductive, and electrotherapeutic scaffolds (ACESs). ACESs are comprised of an alginate/poly-acrylamide interpenetrating network hydrogel optimized for both open surgical and minimally invasive percutaneous approaches. FINDINGS: In a rodent model of sciatic nerve repair, ACESs significantly improved motor and sensory recovery (p < 0.05), increased muscle mass (p < 0.05), and increased axonogenesis (p < 0.05). Triggered dissolution of ACESs enabled atraumatic, percutaneous removal of leads at forces significantly lower than controls (p < 0.05). In a porcine model, ultrasound-guided percutaneous placement of leads with an injectable ACES near the femoral and cervical vagus nerves facilitated stimulus conduction at significantly greater lengths than saline controls (p < 0.05). CONCLUSION: Overall, ACESs facilitated lead placement, stabilization, stimulation, and atraumatic removal, enabling therapeutic PNS as demonstrated in small- and large-animal models. FUNDING: This work was supported by K. Lisa Yang Center for Bionics at MIT.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Animais , Suínos , Nervo Isquiático , Ultrassonografia , Regeneração Nervosa/fisiologia
20.
Sci Adv ; 9(51): eadj3003, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134286

RESUMO

Effective therapies for obesity require invasive surgical and endoscopic interventions or high patient adherence, making it challenging for patients with obesity to effectively manage their disease. Gastric mechanoreceptors sense distension of the stomach and perform volume-dependent vagal signaling to initiate the gastric phase and influence satiety. In this study, we developed a new luminal stimulation modality to specifically activate these gastric stretch receptors to elicit a vagal afferent response commensurate with mechanical distension. We designed the Vibrating Ingestible BioElectronic Stimulator (VIBES) pill, an ingestible device that performs luminal vibratory stimulation to activate mechanoreceptors and stroke mucosal receptors, which induces serotonin release and yields a hormonal metabolic response commensurate with a fed state. We evaluated VIBES across 108 meals in swine which consistently led to diminished food intake (~40%, P < 0.0001) and minimized the weight gain rate (P < 0.05) as compared to untreated controls. Application of mechanoreceptor biology could transform our capacity to help patients suffering from nutritional disorders.


Assuntos
Obesidade , Estômago , Humanos , Animais , Suínos , Obesidade/terapia , Obesidade/metabolismo , Mecanorreceptores/metabolismo , Aumento de Peso , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA