Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Environ Manage ; 317: 115332, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617861

RESUMO

A novel, circular economy-inspired approach for the "passive" (non-powered and reagent-free) treatment of dye-bearing effluent is presented. The treatment utilises the biogeochemical interaction of dye-bearing wastewater with hydrous ferric oxide (HFO) bearing sludges. The work presented demonstrates for the first time the reuse of HFO-rich waste sludges from potable water and mine water treatment. The waste was used directly without modification or reagent addition, as media/substrate in simple flow-through reactors for the decolourisation and biodegradation of methyl orange (MO) and mixed dyes textile effluent. Three phases of exploratory proof of concept work were undertaken. Columns containing HFO sludges were challenged with solution of MO, and MO amended with glycerol (Phase I), MO in a synthetic textile effluent recipe (Phase II), and real mixed textile effluent containing a mixture of dyes (Phase III). After an initial lag period extensive decolourisation of dye was observed in all cases at rates comparable with pure strains and engineered bioreactor processes, with evidence of biodegradation beyond simple cleavage of the mono azo chromophore and mineralisation. The microbiology of the initial sludge samples in both cases exhibited a diverse range of iron oxidising and reducing bacteria. However, post experiment the microbiology of sludge evolved from being dominated by Proteobacteria to being dominated by Firmicutes. Distinct changes in the microbial community structure were observed in post-treatment MWTS and WTWS where genera capable of iron and sulphate reduction and/or aromatic amine degradation were identified. Average nitrogen removal rates for the columns ranged from 27.8 to 194 g/m3/day which is higher than engineered sequential anaerobic-aerobic bioreactor. Postulated mechanisms for the fast anaerobic decolourisation, biodegradation, and mineralisation of the dyes (as well nitrogen transformations) include various direct and indirect enzymatic and metabolic reactions, as well as reductive attack by continuously regenerated reductants such as Fe(II), HFO bound Fe(II), FeS, and HS-. The ability of iron reducers to degrade aromatic rings is also considered important in the further biodegradation and complete mineralisation of organic carbon. The study reveals that abundant and ubiquitous HFO-rich waste sludges, can be used without amendment, as a substrate in simple flow-through bioremediation system for the decolourisation and partial biodegradation of dyes in textile effluent.


Assuntos
Corantes , Esgotos , Compostos Azo/metabolismo , Biodegradação Ambiental , Corantes/química , Compostos Férricos , Compostos Ferrosos , Ferro , Esgotos/microbiologia , Indústria Têxtil
2.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115387

RESUMO

The fabrication of nanoparticles by microorganisms presents a "green" method for generating biocompatible nanomaterials. We discovered the intracellular biosynthesis of fluorescent lead(IV) sulfide nanoparticles by the moderate halophile, Idiomarina sp. strain PR58-8. The bacterium tolerated up to 8 mM Pb(NO3)2 during growth. Non-protein thiols dose-dependently increased in response to metal exposure, which suggests they are involved in the growth of PbS2 crystals and lead detoxification. Using X-ray diffraction, transmission electron microscopy (TEM), high-resolution TEM, and energy dispersive analysis of X-rays, the nanoparticles were characterized as spherical ß-PbS2 nanoparticles (PbS2NPs) with a tetragonal crystal lattice, a crystallite domain size of 2.38 nm, and an interplanar distance of 0.318 nm. A narrow symmetric emission spectrum with a Gaussian distribution and an emission maximum at 386 nm was obtained when the particles were excited at 570 nm. The PbS2NPs exhibited a large Stokes' shift (8,362 cm-1) and a relatively high quantum yield (67%). These properties, along with fluorescence that was maintained in various microenvironments and their biocompatibility, make these nanoparticles excellent candidates for bioimaging. The particles were internalized by HeLa cells and evenly distributed within the cytoplasm, exhibiting their potential for in situ bioimaging applications. The "as-synthesized" lead(IV) sulfide nanoparticles may provide expanded opportunities for targeted bioimaging via modifying the surface of the particles.IMPORTANCE This article reports the intracellular synthesis of fluorescent lead(IV) sulfide nanoparticles (PbS2NPs) by a microorganism. All previous reports on the microbial synthesis of lead-based nanoparticles are on lead(II) sulfide that exhibits near-infrared fluorescence, requiring expensive instrumentation for bioimaging. Bioimaging using PbS2NPs can be achieved using routine epifluorescence microscopes, as it fluoresces in the visible range. The research on PbS2 nanoparticles to date is on their chemical synthesis employing toxic precursors, extreme pH, pressure, and temperature, resulting in cytotoxic products. In this context, the synthesis of PbS2 nanoparticles by Idiomarina sp. strain PR58-8, described in this work, occurs at ambient temperature and pressure and results in the generation of biocompatible nanoparticles with no hazardous by-products. The excellent fluorescence properties that these particles exhibit, as well as their abilities to easily penetrate the cells and evenly distribute within the cytoplasm, make them exceptional candidates for bioimaging applications. This study demonstrated the synthesis and fluorescence bioimaging application of microbially synthesized PbS2 nanoparticles.


Assuntos
Alteromonadaceae/metabolismo , Chumbo/química , Nanopartículas Metálicas/química , Sulfetos/química , Alteromonadaceae/efeitos dos fármacos , Alteromonadaceae/crescimento & desenvolvimento , Citoplasma/química , Citoplasma/ultraestrutura , Fluorescência , Células HeLa , Humanos , Chumbo/farmacologia , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nitratos/farmacologia , Difração de Raios X
3.
Extremophiles ; 19(4): 875-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26085473

RESUMO

Microbial synthesis of highly structured metal sulfide and metallic nanoparticles is a benign approach of nanomaterial synthesis. Various microbes have been exploited for nanoparticle synthesis, but nanofabrication using haloarchaea is still in nascent stages. Here, we report the intracellular synthesis of hexagonal needle-shaped tellurium nanoparticles with an aspect ratio of 1:4.4, by the haloarcheon Halococcus salifodinae BK3. The isolate was able to tolerate up to 5.5 mM K2TeO3. The yield of tellurium nanoparticles was highest when the culture was exposed to 3 mM K2TeO3, even though the isolate exhibited slightly decreased growth rate as compared to the culture growing in the absence of K2TeO3. The enzyme tellurite reductase was responsible for tellurite resistance and nanoparticle synthesis in H. salifodinae BK3. These tellurium nanoparticles exhibited anti-bacterial activities against both Gram-positive and Gram-negative bacteria, with higher antibacterial activity towards Gram-negative bacteria. This is the first report on the synthesis of tellurium nanoparticles by Halophilic archaea.


Assuntos
Antibacterianos/metabolismo , Halococcus/metabolismo , Nanopartículas Metálicas , Telúrio/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Telúrio/farmacologia
4.
J Nanosci Nanotechnol ; 15(12): 10108-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682456

RESUMO

Biofilm formation is a major problem in medical device-related infections leading to failure of implant-based therapies. Though various conventional approaches to counter biofilm formation like physical and/or mechanical removal, chemical removal, and the use of antimicrobials exist, they fail due to increased resistance of biofilms. This review discusses various nanomaterial-based approaches such as the use of metallic and metal oxide nanoparticles- and polymer-based nanocomposites, which are currently being developed for prevention and treatment of biofilms. Nanoparticles of transition metals and their oxides are toxic to microorganisms and exhibit their toxicity through the generation of reactive oxygen species at concentrations that are non-toxic to eukaryotic cells. Other approaches include the entrapment of bioactive agents in polymer/ceramic nanoparticles, for enhanced anti-biofilm activity due to the synergistic effect between them. These nanomaterial-based approaches could play an important role in control and eradication of biofilm related infections and complications associated with medical devices and implants.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanoestruturas/química , Infecções Relacionadas à Prótese/prevenção & controle , Humanos , Próteses e Implantes
5.
Archaea ; 2013: 732864, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533331

RESUMO

Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology.


Assuntos
Resistência Microbiana a Medicamentos , Halobacteriaceae/efeitos dos fármacos , Halobacteriaceae/metabolismo , Homeostase , Metais/metabolismo , Metais/toxicidade
6.
Extremophiles ; 17(5): 821-31, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23884709

RESUMO

Numerous bacteria, fungi, yeasts and viruses have been exploited for biosynthesis of highly structured metal sulfide and metallic nanoparticles. Haloarchaea (salt-loving archaea) of the third domain of life Archaea, on the other hand have not yet been explored for nanoparticle synthesis. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (AgNPs) by the haloarchaeal isolate Halococcus salifodinae BK3. The culture on adaptation to silver nitrate exhibited growth kinetics similar to that of the control. NADH-dependent nitrate reductase was involved in silver tolerance, reduction, synthesis of AgNPs, and exhibited metal-dependent increase in enzyme activity. The AgNPs preparation was characterized using UV-visible spectroscopy, XRD, TEM and EDAX. The XRD analysis of the nanoparticles showed the characteristic Bragg peaks of face-centered cubic silver with crystallite domain size of 22 and 12 nm for AgNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The average particle size obtained from TEM analysis was 50.3 and 12 nm for AgNPs synthesized in NTYE and HNB, respectively. This is the first report on the synthesis of silver nanoparticles by haloarchaea.


Assuntos
Halococcus/metabolismo , Nanopartículas Metálicas , Nitrato de Prata/metabolismo , Proteínas Arqueais/metabolismo , Halococcus/efeitos dos fármacos , Nitrato Redutase (NADPH)/metabolismo , Nitrato de Prata/farmacologia
7.
J Hazard Mater ; 445: 130498, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36459883

RESUMO

Novel resource recovery technologies are required for metals-bearing hazardous wastes in order to achieve circular economy outcomes and industrial symbiosis. Iron oxide and co-occurring hydroxysulphate-bearing wastes are globally abundant and often contain other elements of value. This work addresses the biostimulation of indigenous microbial communities within an iron oxide/ hydroxysulphate-bearing waste and its effect on the subsequent recoverability of metals by hydrochloric, sulphuric, citric acids, and EDTA. Laboratory-scale flow-through column reactors were used to examine the effect of using glycerol (10% w/w) to stimulate the in situ microbial community in an iron oxide/ hydroxysulphate-bearing mine waste. The effects on the evolution of leachate chemistry, changes in microbiological community, and subsequent hydrometallurgical extractability of metals were studied. Results demonstrated increased leachability and selectivity of Pb, Cu, and Zn relative to iron after biostimulation with a total of 0.027 kg of glycerol per kg of waste. Biostimulation, which can be readily applied in situ, potentially opens new routes to metal recovery from globally abundant waste streams that contain jarosite and iron oxides.


Assuntos
Glicerol , Metais Pesados , Metais , Ferro , Metais Pesados/análise , Resíduos Industriais
8.
Genome Integr ; 8: 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250913

RESUMO

Humans are exposed to ionizing radiation not only through background radiation but also through the ubiquitous presence of devices and sources that generate radiation. With the expanded use of radiation in day-to-day life, the chances of accidents or misuse only increase. Therefore, a thorough understanding of the dynamic effects of radiation exposure on biological entities is necessary. The biological effects of radiation exposure on human cells depend on much variability such as level of exposure, dose rate, and the physiological state of the cells. During potential scenarios of a large-scale radiological event which results in mass casualties, dose estimates are essential to assign medical attention according to individual needs. Many attempts have been made to identify biomarkers which can be used for high throughput biodosimetry screening. In this study, we compare the results of different biodosimetry methods on the same irradiated cells to assess the suitability of current biomarkers and push forward the idea of employing a multiparametric approach to achieve an accurate dose and risk estimation.

9.
Enzyme Microb Technol ; 95: 192-200, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866615

RESUMO

Selenium nanoparticles (SeNPs) with novel biological activities, cancer cell selectivity, and low toxicity towards normal cells have gained attention for chemo-therapeutic and chemo-preventive applications. These nanoparticles may be synthesized using micro-organisms, which is the green alternative of nanofabrication. Here we report the intracellular synthesis of SeNPs by the moderate halophilic bacterium, Idiomarina sp. PR58-8 using sodium selenite as the precursor. Characterization of SeNPs by XRD exhibited the characteristic Bragg's peak of hexagonal selenium with a crystallite domain size of 34nm. Morphological characterization by TEM exhibited spherical nanoparticles with a size distribution of 150-350nm. The non-protein thiols were found to be involved in resistance/reduction of sodium selenite. The SeNPs exhibited selectivity in exerting cytotoxicity towards human cervical cancer cell line, HeLa, while being non-toxic towards model normal cell line, HaCaT. The SeNPs induced a caspase-dependent apoptosis in HeLa cell lines as exhibited by the ROS assay, apoptotic index assay, and western blot analysis. These results suggest the application of SeNPs synthesized by Idiomarina sp. PR58-8 as potential anti-neoplastic agents.


Assuntos
Alteromonadaceae/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Selênio/química , Selênio/farmacologia , Apoptose/efeitos dos fármacos , Biotecnologia , Linhagem Celular , Química Verde , Células HeLa , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia , Espécies Reativas de Oxigênio/metabolismo , Selenito de Sódio/metabolismo
10.
Biotechnol Prog ; 30(6): 1480-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25219897

RESUMO

Nanoparticles synthesis by bacteria and yeasts has been widely reported, however, synthesis using halophilic archaea is still in a nascent stage. This study aimed at the intracellular synthesis of selenium nanoparticles (SeNPs) by the haloarchaeon Halococcus salifodinae BK18 when grown in the presence of sodium selenite. Crystallographic characterization of SeNPs by X-ray diffraction, Selected area electron diffraction, and transmission electron microscopy exhibited rod shaped nanoparticles with hexagonal crystal lattice, a crystallite domain size of 28 nm and an aspect ratio (length:diameter) of 13:1. Energy disruptive analysis of X-ray analysis confirmed the presence of selenium in the nano-preparation. The nitrate reductase enzyme assay and the inhibitor studies indicated the involvement of NADH-dependent nitrate reductase in SeNPs synthesis and metal tolerance. The SeNPs exhibited good anti-proliferative properties against HeLa cell lines while being non-cytotoxic to normal cell line model HaCat, suggesting the use of these SeNPs as cancer chemotherapeutic agent. This is the first study on selenium nanoparticles synthesis by haloarchaea.


Assuntos
Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Halococcus/metabolismo , Nanopartículas Metálicas/química , Selênio/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Células HeLa , Humanos , Selênio/química , Selênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA