RESUMO
OBJECTIVE: To profile the gut microbiome (GM) in infants with congenital heart disease (CHD) undergoing cardiac surgery compared with matched infants and to investigate the association with growth (weight, length, and head circumference). STUDY DESIGN: A prospective study in the cardiac intensive care unit at Children's Healthcare of Atlanta and newborn nursery within the Emory Healthcare system. Characteristics including weight, length, head circumference, and surgical variables were collected. Fecal samples were collected presurgery (T1), postsurgery (T2), and before discharge (T3), and once for controls. 16 small ribosomal RNA subunit V4 gene was sequenced from fecal samples and classified into taxonomy using Silva v138. RESULTS: There were 34 children with CHD (cases) and 34 controls. Cases had higher alpha-diversity, and beta-diversity showed significant dissimilarities compared with controls. GM was associated with lower weight and smaller head circumference (z-score < 2). Lower weight was associated with less Acinetobacter, Clostridioides, Parabacteroides, and Escherichia-Shigella. Smaller head circumference with more Veillonella, less Acinetobacter, and less Parabacteroides. CONCLUSIONS: Significant differences in GM diversity and abundance were observed between infants with CHD and control infants. Lower weight and smaller head circumference were associated with distinct GM patterns. Further study is needed to understand the longitudinal effect of microbial dysbiosis on growth in children with CHD.
Assuntos
Microbioma Gastrointestinal , Cardiopatias Congênitas , Humanos , Cardiopatias Congênitas/microbiologia , Masculino , Estudos Prospectivos , Feminino , Lactente , Recém-Nascido , Estudos de Casos e Controles , Fezes/microbiologia , Peso Corporal , EstaturaRESUMO
Infections caused by the Gram-positive bacterium Staphylococcus aureus remain a significant health threat globally. The production of bicomponent pore-forming leukocidins plays an important role in S. aureus pathogenesis. Transcriptionally, these toxins are primarily regulated by the Sae and Agr regulatory systems. However, the posttranslational regulation of these toxins is largely unexplored. In particular, one of the leukocidins, LukAB, has been shown to be both secreted into the extracellular milieu and associated with the bacterial cell envelope. Here, we report that a major cell wall hydrolase, autolysin (Atl), controls the sorting of LukAB from the cell envelope to the extracellular milieu, an effect independent of transcriptional regulation. By influencing the sorting of LukAB, Atl modulates S. aureus cytotoxicity toward primary human neutrophils. Mechanistically, we found that the reduction in peptidoglycan cleavage and increased LukAB secretion in the atl mutant can be reversed through the supplementation of exogenous mutanolysin. Altogether, our study revealed that the cell wall hydrolase activity of Atl and the cleavage of peptidoglycan play an important role in controlling the sorting of S. aureus toxins during secretion.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Humanos , Leucocidinas , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano , Infecções Estafilocócicas/microbiologia , VirulênciaRESUMO
Severe COVID-19 has been associated with coinfections with bacterial and fungal pathogens. Notably, patients with COVID-19 who develop Staphylococcus aureus bacteremia exhibit higher rates of mortality than those infected with either pathogen alone. To understand this clinical scenario, we collected and examined S. aureus blood and respiratory isolates from a hospital in New York City during the early phase of the pandemic from both SARS-CoV-2+ and SARS-CoV-2- patients. Whole genome sequencing of these S. aureus isolates revealed broad phylogenetic diversity in both patient groups, suggesting that SARS-CoV-2 coinfection was not associated with a particular S. aureus lineage. Phenotypic characterization of the contemporary collection of S. aureus isolates from SARS-CoV-2+ and SARS-CoV-2- patients revealed no notable differences in several virulence traits examined. However, we noted a trend toward overrepresentation of S. aureus bloodstream strains with low cytotoxicity in the SARS-CoV-2+ group. We observed that patients coinfected with SARS-CoV-2 and S. aureus were more likely to die during the acute phase of infection when the coinfecting S. aureus strain exhibited high or low cytotoxicity. To further investigate the relationship between SARS-CoV-2 and S. aureus infections, we developed a murine coinfection model. These studies revealed that infection with SARS-CoV-2 renders mice susceptible to subsequent superinfection with low cytotoxicity S. aureus. Thus, SARS-CoV-2 infection sensitizes the host to coinfections, including S. aureus isolates with low intrinsic virulence. IMPORTANCE: The COVID-19 pandemic has had an enormous impact on healthcare across the globe. Patients who were severely infected with SARS-CoV-2, the virus causing COVID-19, sometimes became infected with other pathogens, which is termed coinfection. If the coinfecting pathogen is the bacterium Staphylococcus aureus, there is an increased risk of patient death. We collected S. aureus strains that coinfected patients with SARS-CoV-2 to study the disease outcome caused by the interaction of these two important pathogens. We found that both in patients and in mice, coinfection with an S. aureus strain lacking toxicity resulted in more severe disease during the early phase of infection, compared with infection with either pathogen alone. Thus, SARS-CoV-2 infection can directly increase the severity of S. aureus infection.
Assuntos
COVID-19 , Coinfecção , SARS-CoV-2 , Infecções Estafilocócicas , Staphylococcus aureus , COVID-19/complicações , COVID-19/microbiologia , Coinfecção/microbiologia , Coinfecção/virologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Infecções Estafilocócicas/microbiologia , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Filogenia , Feminino , Cidade de Nova Iorque/epidemiologia , Masculino , Virulência , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma , Bacteriemia/microbiologia , Modelos Animais de Doenças , IdosoRESUMO
Nosocomial infections caused by multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) pathogens are on the rise. However, the virulence strategies employed by these pathogens remain elusive. Here, we study the interaction of ECC clinical isolates with human serum to define how this pathogen evades the antimicrobial action of complement, one of the first lines of host-mediated immune defense. We identified a small number of serum-sensitive strains, including Enterobacter hormaechei strain NR3055, which we exploited for the in vitro selection of serum-resistant clones. Comparative genomics between the serum-sensitive NR3055 strain and the isolated serum-resistant clones revealed a premature stop codon in the wzy gene of the capsular polysaccharide biosynthesis locus of NR3055. The complementation of wzy conferred serum resistance to NR3055, prevented the deposition of complement proteins on the bacterial surface, inhibited phagocytosis by human neutrophils, and rendered the bacteria virulent in a mouse model of peritonitis. Mice exposed to a nonlethal dose of encapsulated NR3055 were protected from subsequent lethal infections by encapsulated NR3055, whereas mice that were previously exposed to unencapsulated NR3055 succumbed to infection. Thus, capsule is a key immune evasion determinant for E. hormaechei, and it is a potential target for prophylactics and therapeutics to combat these increasingly MDR human pathogens. IMPORTANCE Infections caused by antimicrobial resistant bacteria are of increasing concern, especially those due to carbapenem-resistant Enterobacteriaceae pathogens. Included in this group are species of the Enterobacter cloacae complex, regarding which there is a paucity of knowledge on the infection biology of the pathogens, despite their clinical relevance. In this study, we combine techniques in comparative genomics, bacterial genetics, and diverse models of infection to establish capsule as an important mechanism of Enterobacter pathogens to resist the antibacterial activity of serum, a first line of host defense against bacterial infections. We also show that immune memory targeting the Enterobacter capsule protects against lethal infection. The further characterization of Enterobacter infection biology and the immune response to infection are needed for the development of therapies and preventative interventions targeting these highly antibiotic resistant pathogens.