RESUMO
Zinc tungstate is a semiconductor known for its favorable photocatalytic, photoluminescence, and scintillation properties, coupled with its relatively low cost, reduced toxicity, and high stability in biological and catalytic environments. In particular, zinc tungstate evinces scintillation properties, namely the ability to emit visible light upon absorption of energetic radiation such as x rays, which has led to applications not only as radiation detectors but also for biomedical applications involving the delivery of optical light to deep tissue, such as photodynamic therapy and optogenetics. Here, we report on the synthesis of zinc tungstate nanorods generated via an optimized but facile method, which allows for synthetic control over the aspect ratio of the as-synthesized anisotropic motifs via rational variation of the solution pH. We investigate the effect of aspect ratio on their resulting photoluminescent and radioluminescent properties. We further demonstrate the potential of these zinc tungstate nanorods for biomedical applications, such as photodynamic therapy for cancer treatment, by analyzing their toxicological profile within cell lines and neurons.
Assuntos
Nanotubos , Compostos de Tungstênio , Compostos de Tungstênio/química , Compostos de Tungstênio/toxicidade , Nanotubos/química , Humanos , Animais , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Compostos de Zinco/química , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Zinco/químicaRESUMO
ConspectusAchieving precision and reproducibility in terms of physical structure and chemical composition within arbitrary nanoscale systems remains a "holy grail" challenge for nanochemistry. Because nanomaterials possess fundamentally distinctive size-dependent electronic, optical, and magnetic properties with wide-ranging applicability, the ability to produce homogeneous and monodisperse nanostructures with precise size and shape control, while maintaining a high degree of sample quality, purity, and crystallinity, remains a key synthetic objective. Moreover, it is anticipated that the methodologies developed to address this challenge ought to be reasonably simple, scalable, mild, nontoxic, high-yield, and cost-effective, while minimizing reagent use, reaction steps, byproduct generation, and energy consumption.The focus of this Account revolves around the study of various types of nanoscale one-dimensional core-shell motifs, prepared by our group. These offer a compact structural design, characterized by atom economy, to bring together two chemically distinctive (and potentially sharply contrasting) material systems into contact within the structural context of an extended, anisotropic configuration. Herein, we describe complementary strategies aimed at resolving the aforementioned concerns about precise structure and compositional control through the infusion of careful "quantification" and systematicity into customized, reasonably sustainable nanoscale synthetic protocols, developed by our group. Our multipronged approach involved the application of (a) electrodeposition, (b) electrospinning, (c) a combination of underpotential deposition and galvanic displacement reactions, and (d) microwave-assisted chemistry to diverse core-shell model systems, such as (i) carbon nanotube-SiO2 composites, (ii) SnO2/TiO2 motifs, (iii) ultrathin Pt-monolayer shell-coated alloyed metal core nanowires, and (iv) Cu@TiO2 nanowires, for applications spanning optoelectronics, photocatalysis, electrocatalysis, and thermal CO2 hydrogenation, respectively.In so doing, over the years, we have reported on a number of different characterization tools involving spectroscopy (e.g., extended X-ray absorption fine structure (EXAFS) spectroscopy) and microscopy (e.g., high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM)) for gaining valuable insights into the qualitative and quantitative nature of not only the inner core and outer shell themselves but also their intervening interface. While probing the functional catalytic behavior of a few of these core-shell structures under realistic operando conditions, using dynamic, in situ characterization techniques, we found that local and subtle changes in chemical composition and physical structure often occur during the reaction process itself. As such, nuanced differences in atomic packing, facet exposure, degree of derivatization, defect content, and/or extent of crystallinity can impact upon observed properties with tangible consequences for performance, mechanism, and durability.
RESUMO
Ultrathin Pt nanowires possess high activity for various electrocatalytic applications. However, little work has focused on understanding their growth mechanisms. Herein, we utilize a combination of time-dependent,ex situtransmission electron microscopy (TEM) and small angle x-ray scattering (SAXS) techniques to observe the growth process in addition to associated surfactant-based interactions. TEM images indicate that initially nanoparticles are formed within 30 s; these small 'seed' particles quickly elongate to form ultrathin nanowires after 2 min. These motifs remain relatively unchanged in size and shape up to 480 min of reaction. Complementary SAXS data suggests that the initial nanoparticles, which are coated by a surfactant bilayer, arrange into abccsuperlattice. With increasing reaction time, thebcclattice disappears as the nanoparticles grow into nanowires, which then self-assemble into a columnar hexagonal structure in which the individual nanowires are covered by a CTAB monolayer. The hexagonal structure eventually degrades, thereby leading to the formation of lamellar stacking phases comprised of surfactant bilayers. To the best of our knowledge, this is the first time that SAXS has been used to monitor the growth and self-assembly of Pt nanowires. These insights can be used to better understand and rationally control the formation of anisotropic motifs of other metallic nanostructures.
RESUMO
We synthesized and subsequently rationalized the formation of a series of 3D hierarchical metal oxide spherical motifs. Specifically, we varied the chemical composition within a family of ATiO3 (wherein "A" = Ca, Sr, and Ba) perovskites, using a two-step, surfactant-free synthesis procedure to generate structures with average diameters of ~3 microns. In terms of demonstrating the practicality of these perovskite materials, we have explored their use as supports for the methanol oxidation reaction (MOR) as a function of their size, morphology, and chemical composition. The MOR activity of our target systems was found to increase with decreasing ionic radius of the "A" site cation, in order of Pt/CaTiO3 (CTO) > Pt/SrTiO3 (STO) > Pt/BaTiO3 (BTO). With respect to morphology, we observed an MOR enhancement of our 3D spherical motifs, as compared with either ultra-small or cubic control samples. Moreover, the Pt/CTO sample yielded not only improved mass and specific activity values but also a greater stability and durability, as compared with both commercial TiO2 nanoparticle standards and precursor TiO2 templates.
Assuntos
Compostos de Cálcio/química , Metanol/química , Óxidos/química , Platina/química , Tensoativos/química , Titânio/química , Catálise , OxirreduçãoRESUMO
Solution-based, anionic doping represents a convenient strategy with which to improve upon the conductivity of candidate anode materials such as Li4 Ti5 O12 (LTO). As such, novel synthetic hydrothermally-inspired protocols have primarily been devised herein, aimed at the large-scale production of unique halogen-doped, micron-scale, three-dimensional, hierarchical LTO flower-like motifs. Although fluorine (F) doping has been explored, the use of chlorine (Cl) dopants is the primary focus here. Several experimental variables, such as dopant amount, lithium hydroxide concentration, and titanium butoxide purity, were probed and perfected. Furthermore, the Cl doping process did not damage the intrinsic LTO morphology. The analysis, based on interpreting a compilation of SEM, XRD, XPS, and TEM-EDS results, was used to determine an optimized dopant concentration of Cl. Electrochemical tests demonstrated an increased capacity via cycling of 12 % for a Cl-doped sample as compared with pristine LTO. Moreover, the Cl-doped LTO sample described in this study exhibited the highest discharge capacity yet reported at an observed rate of 2C for this material atâ 143mAh g-1 . Overall, these data suggest that the Cl dopant likely enhances not only the ion transport capabilities, but also the overall electrical conductivity of our as-prepared structures. To help explain these favorable findings, theoretical DFT calculations were used to postulate that the electronic conductivity and Li diffusion were likely improved by the presence of increased Ti3+ ion concentration coupled with widening of the Li migration channel.
RESUMO
With the ultimate goal of simultaneously finding cost-effective, more earth-abundant, and high-performance alternatives to commercial Pt/Pd-based catalysts for electrocatalysis, this review article highlights advances in the use of perovskite metal oxides as both catalysts and catalyst supports towards the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) within a direct methanol fuel cell (DMFC) configuration. Specifically, perovskite metal oxides are promising as versatile functional replacements for conventional platinum-group metals, in part because of their excellent ionic conductivity, overall resistance to corrosion, good proton-transport properties, and potential for interesting acidic surface chemistry, all of which contribute to their high activity and reasonable stability, especially within an alkaline electrolytic environment.
RESUMO
In this work, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn2SiO4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration as a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn2SiO4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring â¼30 nm in diameter and â¼700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn2SiO4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD-Mn:Zn2SiO4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical 'accessibility', not only through their incorporation of dopant-tunable Zn2SiO4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.
RESUMO
Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. Herein, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH4OH appear to be the most critical determinants of the phase and morphology. For example, with NH4OH as an additive, we have observed the formation of novel hierarchical nanowire bundles which possess overall lengths of â¼5 µm and widths of â¼1.5 µm but are composed of constituent component sub-units of long, ultrathin (â¼5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF4-CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.
RESUMO
The rising interest in fuel cell vehicle technology (FCV) has engendered a growing need and realization to develop rational chemical strategies to create highly efficient, durable, and cost-effective fuel cells. Specifically, technical limitations associated with the major constituent components of the basic proton exchange membrane fuel cell (PEMFC), namely the cathode catalyst and the proton exchange membrane (PEM), have proven to be particularly demanding to overcome. Therefore, research trends within the community in recent years have focused on (i) accelerating the sluggish kinetics of the catalyst at the cathode and (ii) minimizing overall Pt content, while simultaneously (a) maximizing activity and durability as well as (b) increasing membrane proton conductivity without causing any concomitant loss in either stability or as a result of damage due to flooding. In this light, as an example, high temperature PEMFCs offer a promising avenue to improve the overall efficiency and marketability of fuel cell technology. In this Critical Review, recent advances in optimizing both cathode materials and PEMs as well as the future and peculiar challenges associated with each of these systems will be discussed.
RESUMO
To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (â¼2 nm) core-shell Ptâ¼Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAuâ¼Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Hence, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.
RESUMO
We report the discovery of finite length scale effects on vibronic coupling in nanoscale α-Fe2O3 as measured by the behavior of vibronically activated d-d on-site excitations of Fe(3+) as a function of size and shape. An oscillator strength analysis reveals that the frequency of the coupled symmetry-breaking phonon changes with size, a crossover that we analyze in terms of increasing three-dimensional character to the displacement pattern. These findings demonstrate the flexibility of mixing processes in confined systems and suggest a strategy for both enhancing and controlling charge-lattice interactions in other materials.
RESUMO
Due to their unique size, surface area, and chemical characteristics, nanoparticles' use in consumer products has increased. However, the toxicity of nanoparticle (NP) exposure during the manufacturing process has not been fully assessed. Tungstate NP are used in numerous products, including but not limited to scintillator detectors and fluorescent lighting. As with many NP, no apparent toxicity studies have been completed with tungstate NP. The hypothesis that tungstate NP in vitro exposure results in reactive oxygen species (ROS) formation and cytotoxicity was examined. Differences in toxicity based on tungstate NP size, shape (sphere vs. wire), and chemical characteristics were determined. RAW 264.7 mouse monocyte macrophages were exposed to tungstate NP, and ROS formation was assessed via electron spin resonance (ESR), and several assays including hydrogen peroxide, intracellular ROS, and Comet. Results showed ROS production induced by tungstate nanowire exposure, but this exposure did not result in oxidative DNA damage. Nanospheres showed neither ROS nor DNA damage following cellular exposure. Cells were exposed over 72 h to assess cytotoxicity using an MTT (tetrazolium compound) assay. Results showed that differences in cell death between wires and spheres occurred at 24 h but were minimal at both 48 and 72 h. The present results indicate that tungstate nanowires are more reactive and produce cell death within 24 h of exposure, whereas nanospheres are less reactive and did not produce cell death. Results suggest that differences in shape may affect reactivity. However, regardless of the differences in reactivity, in general both shapes produced mild ROS and resulted in minimal cell death at 48 and 72 h in RAW 264.7 cells.
Assuntos
Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Compostos de Tungstênio/toxicidade , Animais , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Macrófagos/citologia , Camundongos , Monócitos/metabolismo , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Compostos de Tungstênio/químicaRESUMO
One means of combining the unique physical and chemical properties of both carbon nanotubes and complementary material motifs (such as metal sulfide quantum dots (QDs), metal oxide nanostructures, and polymers) can be achieved by generating carbon nanotube (CNT)-based heterostructures. These materials can be subsequently utilized as novel and interesting constituent building blocks for the assembly of functional light energy harvesting devices and because of their architectural and functional flexibility, can potentially open up novel means of using and taking advantage of existing renewable energy sources. In this review, we present the reliable and reproducible synthesis of several unique model CNT-based heterostructured systems as well as include an accompanying discussion about the charge transfer and energy flow properties of these materials for their potential incorporation into a range of practical solar energy conversion devices.
RESUMO
We have employed an ambient, template-based technique that is simple, efficient, and surfactantless to generate a series of bimetallic Pd(1-x)Au(x) and Pd(1-x)Pt(x) nanowires with control over composition and size. Our as-prepared nanowires maintain significantly enhanced activity toward oxygen reduction as compared with commercial Pt nanoparticles and other 1D nanostructures, as a result of their homogeneous alloyed structure. Specifically, Pd(9)Au and Pd(4)Pt nanowires possess oxygen reduction reaction (ORR) activities of 0.49 and 0.79 mA/cm(2), respectively, which are larger than the analogous value for commercial Pt nanoparticles (0.21 mA/cm(2)). In addition, core-shell Pt~Pd(9)Au nanowires have been prepared by electrodepositing a Pt monolayer shell and the corresponding specific, platinum mass, and platinum group metal mass activities were found to be 0.95 mA/cm(2), 2.08 A/mg(Pt), and 0.16 A/mg(PGM), respectively. The increased activity and catalytic performance is accompanied by improved durability toward ORR.
Assuntos
Técnicas Eletroquímicas , Ouro/química , Nanofios/química , Oxigênio/química , Paládio/química , Platina/química , Catálise , Oxirredução , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Nanomaterials have found use in a number of relevant energy applications. In particular, nanoscale motifs of binary metal sulfides can function as conversion materials, similar to that of analogous metal oxides, nitrides, or phosphides, and are characterized by their high theoretical capacity and correspondingly low cost. This review focuses on structure-composition-property relationships of specific relevance to battery applications, emanating from systematic attempts to either (1) vary and alter the dimension of nanoscale architectures or (2) introduce conductive carbon-based entities, such as carbon nanotubes and graphene-derived species. In this study, we will primarily concern ourselves with probing metal sulfide nanostructures generated by a microwave-mediated synthetic approach, which we have explored extensively in recent years. This particular fabrication protocol represents a relatively facile, flexible, and effective means with which to simultaneously control both chemical composition and physical morphology within these systems to tailor them for energy storage applications.
RESUMO
The presence of electronic traps in nanoporous TiO(2) electrodes has been studied by cyclic voltammetry in aqueous media. These simple measurements allow us to map the density of states, providing evidence for the presence of a relatively small number of discrete electron traps at the band gap. We have taken advantage of the variety of TiO(2) synthetic procedures that lead to well-defined morphologies (such as nanowires, nanocolumns, nanotubes, and nanoparticles) of anatase and rutile to investigate the nature of these electron traps. They derive from the structural disorder at the contact between neighboring crystalline nanoparticles. As expected, both their density and energetic location are highly dependent, not only on the crystalline structure (whether it is anatase or rutile), but also on the electrode morphology (i.e. the facets that meet at the grain boundaries). The trap density is also sensitive to pH changes and to the presence of some adsorbates. This variation of the number of traps with the electrolyte indicates that on one hand, an apparent electronic density of states is actually measured. On the other, it indicates that the traps are surface-related in agreement with their particular location at the perimeter of the grain boundaries. The effect of these traps on the observed electrode catalytic reactivity has also been studied. In the dark, it is found that they are directly involved in the electron transfer toward oxygen. In addition, under illumination, the trap states show a deleterious effect, favoring electron recombination.
RESUMO
We report unidirectional charge transfer in multidimensional nanohybrids, consisting of a quantum dot, an electronically active molecular linker, and a carbon nanotube. After covalent attachment to the nanotube, only emission consistent with the negatively charged quantum dot exciton ion rather than the neutral exciton is observed, showing nearly monoexponential recombination kinetics and an average lifetime of 3.5 ns. Using kinetic models, we explain how charge transfer is biased at the expense of other decay pathways.
Assuntos
Modelos Químicos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Pontos Quânticos , Simulação por Computador , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Eletricidade Estática , Propriedades de SuperfícieRESUMO
Herein, we investigate the effect of the chemical composition of double perovskite nanorods on their versatile electrocatalytic activity not only as supports for the oxidation of small organic molecules but also as catalysts for the oxygen evolution reaction. Specifically, Y2CoMnO6 and Y2NiMnO6 nanorods with average diameters of 300 nm were prepared by a two-step hydrothermal method, in which the individual effects of synthetic parameters, such as the pH, annealing temperature, and precursor ratios on both the composition and morphology, were systematically investigated. When used as supports for Pt nanoparticles, Y2CoMnO6/Pt catalysts exhibited an electrocatalytic activity for the methanol oxidation reaction, which is 2.1 and 1.3 times higher than that measured for commercial Pt/C and Y2NiMnO6/Pt, respectively. Similarly, the Co-based catalyst support material displayed an ethanol oxidation activity, which is 2.3 times higher than both Pt/C and Y2NiMnO6/Pt. This clear enhancement in the activity for Y2CoMnO6 can largely be attributed to strong metal-support interactions, as evidenced by a downshift in the binding energy of the Pt 4f bands, measured by X-ray photoelectron spectroscopy (XPS), which is often correlated not only with a downshift in the d-band center but also to a decreased adsorption of poisoning adsorbates. Moreover, when used as catalysts for the oxygen evolution reaction, Y2CoMnO6 displayed a much greater activity as compared with Y2NiMnO6. This behavior can largely be attributed not only to a preponderance of comparatively more favorable oxidation states and electronic configurations but also to the formation of an active layer on the surface of the Y2CoMnO6 catalyst, which collectively gives rise to improved performance metrics and greater stability as compared with both IrO2 and Y2NiMnO6. Overall, these results highlight the importance of both the chemical composition and the electronic structure of double perovskites, especially when utilized in multifunctional roles as either supports or catalysts.
RESUMO
We have synthesized several morphologies and crystal structures of MgWO4 using a one-pot hydrothermal method, producing not only monoclinic stars and large nanoparticles but also triclinic wool balls and sub-10 nm nanoparticles. Herein we describe the importance of reaction parameters in demonstrating morphology control of as-prepared MgWO4. Moreover, we correlate structure and composition with the resulting photoluminescence and radioluminescence properties. Specifically, triclinic-phase samples yielded a photoluminescence emission of 421 nm, whereas monoclinic-phase materials gave rise to an emission maximum of 515 nm. The corresponding radioluminescence data were characterized by a broad emission peak, located at 500 nm for all samples. Annealing the wool balls and sub-10 nm particles to transform the crystal structure from a triclinic to a monoclinic phase yielded a radioluminescence (RL) emission signal that was two orders of magnitude greater than that of their unannealed counterparts. Finally, to confirm the practical utility of these materials for biomedical applications, a series of sub-10 nm particles, including as-prepared and annealed samples, were functionalized with biocompatible PEG molecules, and subsequently were found to be readily taken up by various cell lines as well as primary cultured hippocampal neurons with low levels of toxicity, thereby highlighting for the first time the potential of this particular class of metal oxides as viable and readily generated platforms for a range of biomedical applications.
RESUMO
This study thoroughly investigated the synthesis of not only 4 triply-doped metal oxides but also 5 singly-doped analogues of Li4Ti5O12 for electrochemical applications. In terms of synthetic novelty, the triply-doped materials were fabricated using a relatively facile hydrothermal method for the first-time, involving the simultaneous substitution of Ca for the Li site, Ln (i.e., Dy, Y, or Gd) for the Ti site, and Cl for the O site. Based on XRD, SEM, and HRTEM-EDS measurements, the resulting materials, incorporating a relatively homogeneous and uniform dispersion of both the single and triple dopants, exhibited a micron-scale flower-like morphology that remained apparently undamaged by the doping process. Crucially, the surface chemistry of all of the samples was probed using XPS in order to analyze any nuanced changes associated with either the various different lanthanide dopants or the identity of the metal precursor types involved. In the latter case, it was observed that the use of a nitrate salt precursor versus that of a chloride salt enabled not only a higher lanthanide incorporation but also the potential for favorable N-doping, all of which promoted a concomitant increase in conductivity due to a perceptible increase in Ti3+ content. In terms of the choice of lanthanide system, it was observed via CV analysis that dopant incorporation generally (albeit with some notable exceptions, especially with Y-based materials) led to the formation of higher amounts of Ti3+ species within both the singly and triply-doped materials, which consequentially led to the potential for increased diffusivity and higher mobility of Li+ species with the possibility for enabling greater capacity within these classes of metal oxides.