Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Endocr Disord ; 22(1): 310, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494838

RESUMO

BACKGROUND: Insulinoma is an uncommon insulin-secreting neuroendocrine tumor that presents with severe recurrent hypoglycemia. Although cases of extrapancreatic insulinomas have been reported, the majority of insulinomas occur in the pancreas. The number of reported cases of ectopic insulinomas with follow-up assessments is limited and they do not report disease recurrence. The current report presents the first documented case of recurrent extrapancreatic insulinoma with 8 years of follow-up, provides relevant literature review, and proposes surveillance and treatment strategies. CASE PRESENTATION: We describe an insulinoma localized in the duodenal wall of a 36-year-old female who presented in 2013 with weight gain and Whipple's triad and was successfully managed with duodenotomy and enucleation. She presented again in 2017 with recurrent Whipple's triad and was found to have metastatic disease localized exclusively to peripancreatic lymph nodes. Primary pancreatic insulinoma was not evident and her hypoglycemia resolved following lymph node dissection. Eight years after initial presentation continuous glucose monitoring (CGM) showed a trend for euglycemia, and PET-CT Gallium 68 DOTATATE scan evaluation indicated absence of recurrent disease. CONCLUSION: Insulinomas are rare clinical entities and extrapancreatic insulinomas are particularly uncommon. Follow-up evaluation and treatment strategies for ectopic insulinoma recurrence presents a significant clinical challenge as the condition has hitherto remained undescribed in the literature. Available evidence in the literature indicates that lymph node metastases of intrapancreatic insulinomas likely do not change prognosis. Given the absence of long-term data informing the management and monitoring of patients with extrapancreatic insulinoma, we suggest patient education for hypoglycemic symptoms, monitoring for hypoglycemia with CGM, annual imaging, and a discussion with patients regarding treatment with octreotide or alternative somatostatin receptor analog therapies.


Assuntos
Hipoglicemia , Insulinoma , Neoplasias Pancreáticas , Humanos , Feminino , Adulto , Metástase Linfática , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Automonitorização da Glicemia , Neoplasias Pancreáticas/cirurgia , Glicemia , Recidiva Local de Neoplasia , Insulinoma/cirurgia , Insulinoma/diagnóstico , Hipoglicemia/etiologia , Hipoglicemia/diagnóstico
2.
Proteins ; 87(1): 41-50, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367518

RESUMO

Mammalian glutamate dehydrogenase (GDH) has complex allosteric regulation and the loss of GTP inhibition causes the hyperinsulinism/hyperammonemia syndrome (HHS) where insulin is hypersecreted upon consumption of protein. The archetypical HHS lesion is H454Y and lies in the GTP binding pocket. To better understand the mechanism of HHS, we determined the crystal structure of H454Y. When the bovine GDH crystal structures were minimized to prepare for further computational analysis, unusually large deviations were found at the allosteric NADH binding site due to chemical sequence errors. Notably, 387 lies in an allosteric where several activators and inhibitors bind and should be lysine rather than asparagine. All structures were re-refined and the consequence of this sequence error on NADH binding was calculated using free energy perturbation. The binding free energy penalty going from the correct to incorrect sequence found is +5 kcal/mol per site and therefore has a significant impact on drug development. BROADER AUDIENCE ABSTRACT: Glutamate dehydrogenase is a key enzyme involved in amino acid catabolism. As such, it is heavily regulated in animals by a wide array of metabolites. The importance of this regulation is most apparent in a genetic disorder called hyperinsulinism/hyperammonemia (HHS) where patients hypersecrete insulin upon the consumption of protein. We determined the atomic structure of one of these HHS mutants to better understand the disease and also analyzed an allosteric regulatory site.


Assuntos
Glutamato Desidrogenase/química , Guanosina Trifosfato/metabolismo , Hiperinsulinismo/genética , Hipoglicemia/genética , Proteínas Mutantes/química , Mutação , Regulação Alostérica , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Humanos , Hiperinsulinismo/enzimologia , Hipoglicemia/enzimologia , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica
3.
Am J Med Genet A ; 179(11): 2214-2227, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31464105

RESUMO

Inactivating mutations in the genes encoding the two subunits of the pancreatic beta-cell KATP channel, ABCC8 and KCNJ11, are the most common finding in children with congenital hyperinsulinism (HI). Interpreting novel missense variants in these genes is problematic, because they can be either dominant or recessive mutations, benign polymorphisms, or diabetes mutations. This report describes six novel missense variants in ABCC8 and KCNJ11 that were identified in 11 probands with congenital HI. One of the three ABCC8 mutations (p.Ala1458Thr) and all three KCNJ11 mutations were associated with responsiveness to diazoxide. Sixteen family members carried the ABCC8 or KCNJ11 mutations; only two had hypoglycemia detected at birth and four others reported symptoms of hypoglycemia. Phenotype testing of seven adult mutation carriers revealed abnormal protein-induced hypoglycemia in all; fasting hypoketotic hypoglycemia was demonstrated in four of the seven. All of six mutations were confirmed to cause dominant pathogenic defects based on in vitro expression studies in COSm6 cells demonstrating normal trafficking, but reduced responses to MgADP and diazoxide. These results indicate a combination of in vitro and in vivo phenotype tests can be used to differentiate dominant from recessive KATP channel HI mutations and personalize management of children with congenital HI.


Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Canais KATP/genética , Mutação , Alelos , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genótipo , Humanos , Lactente , Canais KATP/química , Masculino , Linhagem , Fenótipo , Relação Estrutura-Atividade
4.
Am J Med Genet A ; 179(4): 542-551, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30719864

RESUMO

Sotos syndrome is an overgrowth syndrome characterized by distinctive facial features and intellectual disability caused by haploinsufficiency of the NSD1 gene. Genotype-phenotype correlations have been observed, with major anomalies seen more frequently in patients with 5q35 deletions than those with point mutations in NSD1. Though endocrine features have rarely been described, transient hyperinsulinemic hypoglycemia (HI) of the neonatal period has been reported as an uncommon presentation of Sotos syndrome. Eight cases of 5q35 deletions and one patient with an intragenic NSD1 mutation with transient HI have been reported. Here, we describe seven individuals with HI caused by NSD1 gene mutations with three having persistent hyperinsulinemic hypoglycemia. These patients with persistent HI and Sotos syndrome caused by NSD1 mutations, further dispel the hypothesis that HI is due to the deletion of other genes in the deleted 5q35 region. These patients emphasize that NSD1 haploinsufficiency is sufficient to cause HI, and suggest that Sotos syndrome should be considered in patients presenting with neonatal HI. Lastly, these patients help extend the phenotypic spectrum of Sotos syndrome to include HI as a significant feature.


Assuntos
Hiperinsulinismo Congênito/patologia , Deficiências do Desenvolvimento/patologia , Transtornos do Crescimento/patologia , Histona-Lisina N-Metiltransferase/genética , Mutação , Síndrome de Sotos/patologia , Adulto , Hiperinsulinismo Congênito/genética , Deficiências do Desenvolvimento/genética , Feminino , Transtornos do Crescimento/genética , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Prognóstico , Síndrome de Sotos/genética
5.
Neurochem Res ; 44(1): 117-132, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29079932

RESUMO

In-vitro, glutamate dehydrogenase (GDH) catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate (α-KG). GDH is found in all organisms, but in animals is allosterically regulated by a wide array of metabolites. For many years, it was not at all clear why animals required such complex control. Further, in both standard textbooks and some research publications, there has been some controversy as to the directionality of the reaction. Here we review recent work demonstrating that GDH operates mainly in the catabolic direction in-vivo and that the finely tuned network of allosteric regulators allows GDH to meet the varied needs in a wide range of tissues in animals. Finally, we review the progress in using pharmacological agents to activate or inhibit GDH that could impact a wide range of pathologies from insulin disorders to tumor growth.


Assuntos
Metabolismo Energético/fisiologia , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Animais , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/metabolismo , Glutamato Desidrogenase/antagonistas & inibidores , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
6.
Pediatr Diabetes ; 19(5): 910-916, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29493090

RESUMO

BACKGROUND: Dominant inactivating mutations in HNF1A and HNF4A have been described to cause hyperinsulinism (HI) before evolving to diabetes. However, information available in the literature regarding the clinical phenotype is limited. OBJECTIVE: To report the prevalence of HNF1A and HNF4A mutations in a large cohort of children with HI, and to describe their genotypes and phenotypes. DESIGN: Retrospective descriptive study. METHODS: Medical records were reviewed to extract clinical information. Mutation analysis was carried out for 8 genes associated with HI (ABCC8, KCNJ11, GLUD1, GCK, HADH, HNF4A, HNF1A, and UCP2). RESULTS: HNF1A and HNF4A mutations were identified in 5.9% (12 out of 204; HNF1A = 7, HNF4A = 5) of diazoxide-responsive HI probands. The clinical phenotypes were extremely variable. Two children showed evidence of ketone production during hypoglycemia, a biochemical profile atypical for hyperinsulinism. At the time of analysis, diazoxide was discontinued in 5 children at a median age of 6.8 years. None had developed diabetes mellitus at a median age of 7.0 years. CONCLUSIONS: Given the heterogeneous clinical phenotypes of HNF1A- and HNF4A-HI, all children with transient, diazoxide-responsive HI without clear history of perinatal stress, should be screened for HNF1A and HNF4A mutations as it predicts the clinical course and affects the subsequent management plan.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Hiperinsulinismo/genética , Criança , Diazóxido/uso terapêutico , Feminino , Humanos , Hiperinsulinismo/tratamento farmacológico , Masculino , Mutação , Estudos Retrospectivos
7.
J Biol Chem ; 291(42): 21971-21983, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27573238

RESUMO

ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to ß-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects.


Assuntos
Carbamazepina/farmacologia , Glibureto/farmacologia , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Compostos de Sulfonilureia/farmacologia , Receptores de Sulfonilureias/metabolismo , Feminino , Humanos , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores de Sulfonilureias/genética
8.
N Engl J Med ; 370(6): 533-42, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499211

RESUMO

BACKGROUND: Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS: Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS: Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS: Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Assuntos
Glucofosfatos/genética , Doença de Depósito de Glicogênio/genética , Fenótipo , Fosfoglucomutase/genética , Galactose/uso terapêutico , Genes Recessivos , Glucose/metabolismo , Glucofosfatos/metabolismo , Doença de Depósito de Glicogênio/dietoterapia , Doença de Depósito de Glicogênio/metabolismo , Glicoproteínas/biossíntese , Glicosilação , Humanos , Masculino , Mutação , Fosfoglucomutase/metabolismo , RNA Mensageiro/análise
9.
Pediatr Diabetes ; 18(1): 3-9, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27753189

RESUMO

Hypoglycemia continues to be an important cause of morbidity in neonates and children. Prompt diagnosis and management of the underlying hypoglycemia disorder is critical for preventing brain damage and improving outcomes. Congenital hyperinsulinism (HI) is the most common and severe cause of persistent hypoglycemia in neonates and children. Recent discoveries of the genetic causes of HI have improved our understanding of the pathophysiology, but its management is complex and requires the integration of clinical, biochemical, molecular, and imaging findings to establish the appropriate treatment according to the subtype. Here we present a summary of a recent international symposium on congenital hypoglycemia disorders with emphasis on novel molecular mechanisms resulting in HI, genetic diagnosis, overall approach to management, novel therapies under development, and current outcomes.


Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/etiologia , Hiperinsulinismo Congênito/terapia , Hipoglicemia/congênito , Algoritmos , Criança , Congressos como Assunto , Humanos , Hipoglicemia/diagnóstico , Hipoglicemia/genética , Hipoglicemia/terapia , Recém-Nascido , Philadelphia , Padrões de Prática Médica/tendências , Resultado do Tratamento
10.
Pediatr Diabetes ; 18(8): 911-916, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28165182

RESUMO

Activating mutations in the GLUD1 gene, which encodes glutamate dehydrogenase (GDH), result in the hyperinsulinism-hyperammonemia syndrome. GDH is an allosterically regulated enzyme responsible for amino acid-mediated insulin secretion via the oxidative deamination of glutamate to 2-oxoglutarate, leading to ATP production and insulin release. This study characterizes a novel combination of mutations in GLUD1 found in a neonate who presented on the first day of life with severe hypoglycemia, hyperammonemia, and seizures. Mutation analysis revealed a novel frameshift mutation (c.37delC) inherited from the asymptomatic mother that results in a truncated protein and a de novo activating mutation (p.S445L) close to the GTP binding site that has previously been reported. GTP inhibition of GDH enzyme activity in 293T cells expressing the p.S445L or wild-type GDH showed that the half-maximal inhibitory concentration (IC50 ) for GTP was approximately 800 times higher for p.S445L compared to wild type. GTP inhibition of GDH activity in lymphoblasts from the patient, from a heterozygote for the p.S445L mutation, and in wild-type lymphoblasts showed that the IC50 for GTP of the patient was approximately 200 times that of wild type and 7 times that of heterozygote. However, while the patient had a loss of GTP inhibition of GDH that was more severe than that of heterozygotes, the patient's clinical phenotype is similar to typical heterozygous mutations of GDH. This is the first time we have observed a functionally homozygous activating mutation of GDH in a human.


Assuntos
Hiperinsulinismo Congênito/genética , Glutamato Desidrogenase/genética , Feminino , Células HEK293 , Humanos , Recém-Nascido , Padrões de Herança , Mutação
11.
J Med Genet ; 53(1): 53-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26545876

RESUMO

BACKGROUND: Congenital hyperinsulinism (HI) can have monogenic or syndromic causes. Although HI has long been recognised to be common in children with Beckwith-Wiedemann syndrome (BWS), the underlying mechanism is not known. METHODS: We characterised the clinical features of children with both HI and BWS/11p overgrowth spectrum, evaluated the contribution of KATP channel mutations to the molecular pathogenesis of their HI and assessed molecular pathogenesis associated with features of BWS. RESULTS: We identified 28 children with HI and BWS/11p overgrowth from 1997 to 2014. Mosaic paternal uniparental isodisomy for chromosome 11p (pUPD11p) was noted in 26/28 cases. Most were refractory to diazoxide treatment and half required subtotal pancreatectomies. Patients displayed a wide range of clinical features from classical BWS to only mild hemihypertrophy (11p overgrowth spectrum). Four of the cases had a paternally transmitted KATP mutation and had a much more severe HI course than patients with pUPD11p alone. CONCLUSIONS: We found that patients with pUPD11p-associated HI have a persistent and severe HI phenotype compared with transient hypoglycaemia of BWS/11p overgrowth patients caused by other aetiologies. Testing for pUPD11p should be considered in all patients with persistent congenital HI, especially for those without an identified HI gene mutation.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Cromossomos Humanos Par 11 , Hiperinsulinismo Congênito/genética , Dissomia Uniparental , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/terapia , Criança , Pré-Escolar , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/tratamento farmacológico , Metilação de DNA , Análise Mutacional de DNA , Epigênese Genética , Feminino , Humanos , Lactente , Canais KATP/genética , Masculino , Mutação , Pâncreas/metabolismo , Pâncreas/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
J Pediatr ; 168: 212-219, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26490124

RESUMO

OBJECTIVE: To evaluate thresholds of various biomarkers for defining excess insulin activity to recognize congenital hyperinsulinism. STUDY DESIGN: This was a retrospective chart review of diagnostic fasting tests in children with ketotic hypoglycemia (n = 30) and genetically/pathology confirmed congenital hyperinsulinism (n = 28). Sensitivity and specificity for congenital hyperinsulinism were determined for plasma insulin, ß-hydroxybutyrate, free fatty acids (FFA), C-peptide, insulin-like growth factor binding protein-1 (IGFBP-1), and the glycemic response to glucagon (through the glucagon stimulation test [GST]) at the time of hypoglycemia. RESULTS: Only 23 of the 28 subjects with congenital hyperinsulinism had detectable insulin (median, 6.7 µIU/mL), and insulin was undetectable in all subjects with ketotic hypoglycemia. Compared with ketotic hypoglycemia, subjects with congenital hyperinsulinism had higher GST values (57 vs 13 mg/dL; ΔGST ≥30 mg/dL in 24 of 27 subjects with congenital hyperinsulinism vs 0 of 30 subjects with ketotic hypoglycemia) and C-peptide levels (1.55 vs 0.11 ng/mL), with lower levels of FFA (0.82 vs 2.51 mM) and IGFBP-1 (59.5 vs 634 ng/mL). At the time of hypoglycemia, the upper limits of ß-hydroxybutyrate and FFA in subjects with congenital hyperinsulinism were higher than reported previously (ß-hydroxybutyrate <1.8 mM and FFA <1.7 mM), providing the best sensitivity for congenital hyperinsulinism vs ketotic hypoglycemia. A C-peptide level ≥0.5 ng/mL was 89% sensitive and 100% specific, and an IGFBP-1 level ≤110 ng/mL was 85% sensitive and 96.6% specific. CONCLUSION: Because low or undetectable insulin level during hypoglycemia does not exclude the diagnosis of hyperinsulinism, C-peptide and IGFBP-1 may inform the diagnosis of congenital hyperinsulinism. In this group of children with well-defined congenital hyperinsulinism, thresholds for "suppressed" ß-hydroxybutyrate and FFA are higher than previously reported levels.


Assuntos
Hiperinsulinismo Congênito/sangue , Hiperinsulinismo Congênito/diagnóstico , Insulina/sangue , Adolescente , Biomarcadores/sangue , Peptídeo C/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Masculino , Estudos Retrospectivos
13.
J Pediatr ; 175: 130-136.e8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27206562

RESUMO

OBJECTIVE: To define phenotypic groups and identify predictors of disease severity in patients with phosphoglucomutase-1 deficiency (PGM1-CDG). STUDY DESIGN: We evaluated 27 patients with PGM1-CDG who were divided into 3 phenotypic groups, and group assignment was validated by a scoring system, the Tulane PGM1-CDG Rating Scale (TPCRS). This scale evaluates measurable clinical features of PGM1-CDG. We examined the relationship between genotype, enzyme activity, and TPCRS score by using regression analysis. Associations between the most common clinical features and disease severity were evaluated by principal component analysis. RESULTS: We found a statistically significant stratification of the TPCRS scores among the phenotypic groups (P < .001). Regression analysis showed that there is no significant correlation between genotype, enzyme activity, and TPCRS score. Principal component analysis identified 5 variables that contributed to 54% variance in the cohort and are predictive of disease severity: congenital malformation, cardiac involvement, endocrine deficiency, myopathy, and growth. CONCLUSIONS: We established a scoring algorithm to reliably evaluate disease severity in patients with PGM1-CDG on the basis of their clinical history and presentation. We also identified 5 clinical features that are predictors of disease severity; 2 of these features can be evaluated by physical examination, without the need for specific diagnostic testing and thus allow for rapid assessment and initiation of therapy.


Assuntos
Doença de Depósito de Glicogênio/diagnóstico , Fenótipo , Índice de Gravidade de Doença , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Feminino , Marcadores Genéticos , Genótipo , Doença de Depósito de Glicogênio/enzimologia , Doença de Depósito de Glicogênio/genética , Humanos , Masculino , Mutação , Fosfoglucomutase/deficiência , Fosfoglucomutase/genética , Exame Físico , Análise de Componente Principal , Análise de Regressão , Adulto Jovem
15.
J Biol Chem ; 288(6): 3938-51, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23266825

RESUMO

Paracrine signaling between pancreatic islet ß-cells and α-cells has been proposed to play a role in regulating glucagon responses to elevated glucose and hypoglycemia. To examine this possibility in human islets, we used a metabolomic approach to trace the responses of amino acids and other potential neurotransmitters to stimulation with [U-(13)C]glucose in both normal individuals and type 2 diabetics. Islets from type 2 diabetics uniformly showed decreased glucose stimulation of insulin secretion and respiratory rate but demonstrated two different patterns of glucagon responses to glucose: one group responded normally to suppression of glucagon by glucose, but the second group was non-responsive. The non-responsive group showed evidence of suppressed islet GABA levels and of GABA shunt activity. In further studies with normal human islets, we found that γ-hydroxybutyrate (GHB), a potent inhibitory neurotransmitter, is generated in ß-cells by an extension of the GABA shunt during glucose stimulation and interacts with α-cell GHB receptors, thus mediating the suppressive effect of glucose on glucagon release. We also identified glycine, acting via α-cell glycine receptors, as the predominant amino acid stimulator of glucagon release. The results suggest that glycine and GHB provide a counterbalancing receptor-based mechanism for controlling α-cell secretory responses to metabolic fuels.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Glicina/metabolismo , Células Secretoras de Insulina/metabolismo , Oxibato de Sódio/metabolismo , Adulto , Diabetes Mellitus Tipo 2/patologia , Feminino , Células Secretoras de Glucagon/patologia , Humanos , Células Secretoras de Insulina/patologia , Masculino , Pessoa de Meia-Idade , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
Neurochem Res ; 39(3): 433-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24122080

RESUMO

Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.


Assuntos
Glutamato Desidrogenase/metabolismo , Homeostase/fisiologia , Insulina/metabolismo , Regulação Alostérica , Animais , Glutamato Desidrogenase/química , Humanos , Hiperamonemia/metabolismo , Hiperinsulinismo/metabolismo
17.
Adv Pediatr ; 71(1): 119-134, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944478

RESUMO

To provide a more appropriate foundation for dealing with the problem of hypoglycemia in newborn infants, this article focuses on the mechanisms which underlie the various forms of neonatal hypoglycemia and discusses their implications for newborn care. Evidence indicates that all of the major forms of neonatal hypoglycemia are the result of hyperinsulinism due to dysregulation of pancreatic islet insulin secretion. Based on these observations, the authors propose that routine measurement of B-hydroxybutyrate should be considered an essential part of glucose monitoring in newborn infants.


Assuntos
Hipoglicemia , Humanos , Recém-Nascido , Hipoglicemia/etiologia , Hipoglicemia/diagnóstico , Glicemia/análise , Glicemia/metabolismo , Insulina , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/etiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38429075

RESUMO

OBJECTIVE: The Glucose in Well Babies (GLOW) Study showed that there are two phases of low glucose concentrations in healthy newborn infants: an initial phase in which plasma concentrations of ketones are low; and a second phase in which low glucose concentrations are accompanied by elevated concentrations of ketones. The implications of these two phases for the brain differ depending on whether ketones are available as alternative substrate for brain metabolism. The purpose of this study was to estimate the duration of these two phases of neonatal low glucose concentrations in 66 healthy breastfed newborns from the GLOW Study during the first 5 days of life. METHODS: The sum of glucose and beta-hydroxybutyrate (BOHB) was used as a proxy for the total concentrations of insulin-dependent fuels for the brain; a threshold value below 4 mmol/L was taken to indicate the presence of relative hyperinsulinism and a BOHB concentration above 0.5 mmol/L to indicate ketonaemia. RESULTS: The first phase of low glucose concentrations lasted a median of 40 hours and in 15% of infants, this persisted beyond 60 hours. Fifty (76%) of the 66 infants subsequently had ketonaemia, which resolved at a median age of 76 hours (range 41->120 hours). CONCLUSIONS: These data suggest that monitoring BOHB concentrations may be useful for interpreting glucose concentrations in newborns and screening for persistent hyperinsulinism.

19.
Nature ; 448(7153): 591-4, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17632545

RESUMO

Type 1 diabetes (T1D) in children results from autoimmune destruction of pancreatic beta cells, leading to insufficient production of insulin. A number of genetic determinants of T1D have already been established through candidate gene studies, primarily within the major histocompatibility complex but also within other loci. To identify new genetic factors that increase the risk of T1D, we performed a genome-wide association study in a large paediatric cohort of European descent. In addition to confirming previously identified loci, we found that T1D was significantly associated with variation within a 233-kb linkage disequilibrium block on chromosome 16p13. This region contains KIAA0350, the gene product of which is predicted to be a sugar-binding, C-type lectin. Three common non-coding variants of the gene (rs2903692, rs725613 and rs17673553) in strong linkage disequilibrium reached genome-wide significance for association with T1D. A subsequent transmission disequilibrium test replication study in an independent cohort confirmed the association. These results indicate that KIAA0350 might be involved in the pathogenesis of T1D and demonstrate the utility of the genome-wide association approach in the identification of previously unsuspected genetic determinants of complex traits.


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Proteínas de Transporte de Monossacarídeos/genética , Estudos de Casos e Controles , Estudos de Coortes , Marcadores Genéticos/genética , Humanos , Lectinas Tipo C , Desequilíbrio de Ligação/genética , Núcleo Familiar , Polimorfismo de Nucleotídeo Único/genética
20.
Trends Biochem Sci ; 33(11): 557-64, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18819805

RESUMO

Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.


Assuntos
Regulação Alostérica , Glutamato Desidrogenase/metabolismo , Regulação Alostérica/genética , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Cilióforos/enzimologia , Ativação Enzimática , Evolução Molecular , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/química , Humanos , Insulina/metabolismo , Secreção de Insulina , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA