Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(7): 3401-3420, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35849820

RESUMO

Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.


Assuntos
Córtex Auditivo , Tentilhões , Humanos , Masculino , Animais , Feminino , Estrogênios/farmacologia , Tentilhões/metabolismo , Vocalização Animal/fisiologia , Estradiol , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Mamíferos/metabolismo
2.
J Neurosci ; 39(5): 918-928, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30587540

RESUMO

Breast cancer patients using aromatase inhibitors (AIs) as an adjuvant therapy often report side effects, including hot flashes, mood changes, and cognitive impairment. Despite long-term use in humans, little is known about the effects of continuous AI administration on the brain and cognition. We used a primate model of human cognitive aging, the common marmoset, to examine the effects of a 4-week daily administration of the AI letrozole (20 µg, p.o.) on cognition, anxiety, thermoregulation, brain estrogen content, and hippocampal pyramidal cell physiology. Letrozole treatment was administered to both male and female marmosets and reduced peripheral levels of estradiol (E2), but unexpectedly increased E2 levels in the hippocampus. Spatial working memory and intrinsic excitability of hippocampal neurons were negatively affected by the treatment possibly due to increased hippocampal E2. While no changes in hypothalamic E2 were observed, thermoregulation was disrupted by letrozole in females only, indicating some impact on hypothalamic activity. These findings suggest adverse effects of AIs on the primate brain and call for new therapies that effectively prevent breast cancer recurrence while minimizing side effects that further compromise quality of life.SIGNIFICANCE STATEMENT Aromatase inhibitors (AIs) are used as an adjuvant therapy for estrogen-receptor-positive breast cancer and are associated with side effects, including hot flashes, depression/anxiety, and memory deficits severe enough for many women to discontinue this life-saving treatment. AIs are also used by men, yet sex differences in the reported side effects have not been systematically studied. We show that AI-treated male and female marmosets exhibit behavioral changes consistent with these CNS symptoms, as well as elevated hippocampal estradiol and compromised hippocampal physiology. These findings illustrate the need for (1) a greater understanding of the precise mechanisms by which AIs impact brain function and (2) the development of new treatment approaches for breast cancer patients that minimize adverse effects on the brain.


Assuntos
Inibidores da Aromatase/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Letrozol/efeitos adversos , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Callithrix , Cognição/efeitos dos fármacos , Estradiol/metabolismo , Estrogênios/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Caracteres Sexuais
3.
Horm Behav ; 83: 60-67, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27178577

RESUMO

The potent estrogen 17ß-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents.


Assuntos
Inibidores da Aromatase/farmacologia , Estradiol/biossíntese , Hipocampo/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Nitrilas/farmacologia , Triazóis/farmacologia , Animais , Feminino , Hipocampo/metabolismo , Letrozol , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Ovariectomia , Reconhecimento Psicológico/efeitos dos fármacos
4.
Endocrinology ; 159(3): 1328-1338, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29381778

RESUMO

Estrogens affect cerebellar activity and cerebellum-based behaviors. Within the adult rodent cerebellum, the best-characterized action of estradiol is to enhance glutamatergic signaling. However, the mechanisms by which estradiol promotes glutamatergic neurotransmission remain unknown. Within the mouse cerebellum, we found that estrogen receptor activation of metabotropic glutamate receptor type 1a strongly enhances neurotransmission at the parallel fiber-Purkinje cell synapse. The blockade of local estrogen synthesis within the cerebellum results in a diminution of glutamatergic neurotransmission. Correspondingly, decreased estrogen availability via gonadectomy or blockade of aromatase activity negatively affects locomotor performance. These data indicate that locally derived, and not just gonad-derived, estrogens affect cerebellar physiology and function. In addition, estrogens were found to facilitate parallel fiber-Purkinje cell synaptic transmission in both sexes. As such, the actions of estradiol to support cerebellar neurotransmission and cerebellum-based behaviors might be fundamental to understanding the normal processing of activity within the cerebellar cortex.


Assuntos
Córtex Cerebelar/fisiologia , Estrogênios/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologia , Animais , Aromatase , Inibidores da Aromatase/farmacologia , Castração , Cerebelo/metabolismo , Estrogênios/biossíntese , Estrogênios/deficiência , Feminino , Masculino , Camundongos , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA