Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38819364

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) exert immunomodulatory effects, primarily through released extracellular vesicles (EVs). For the clinical-grade manufacturing of MSC-EV products culture conditions need to support MSC expansion and allow the manufacturing of potent MSC-EV products. Traditionally, MSCs are expanded in fetal bovine serum-supplemented media. However, according to good manufacturing practice (GMP) guidelines the use of animal sera should be avoided. To this end, human platelet lysate (hPL) has been qualified as an animal serum replacement. Although hPL outcompetes animal sera in promoting MSC expansion, hPL typically contains components of the coagulation system that need to be inhibited or removed to avoid coagulation reactions in the cell culture. Commonly, heparin is utilized as an anticoagulant; however, higher concentrations of heparin can negatively impact MSC viability, and conventional concentrations alone do not sufficiently prevent clot formation in prepared media. METHODS: To circumvent unwanted coagulation processes, this study compared various clotting prevention strategies, including different anticoagulants and calcium chloride (CaCl2)-mediated declotting methods, which in combination with heparin addition was found effective. We evaluated the influence of the differently treated hPLs on the proliferation and phenotype of primary bone marrow-derived MSCs and identified the CaCl2-mediated declotting method as the most effective option. To determine whether CaCl2 declotted hPL allows the manufacturing of immunomodulatory MSC-EV products, EVs were prepared from conditioned media of MSCs expanded with either conventional or CaCl2 declotted hPL. In addition to metric analyses, the immunomodulatory potential of resulting MSC-EV products was assessed in a recently established multi-donor mixed lymphocyte reaction assay. RESULTS AND CONCLUSIONS: Our findings conclusively show that CaCl2-declotted hPLs support the production of immunomodulatory-active MSC-EV products.

2.
Cytotherapy ; 25(2): 138-147, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36244910

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) derived from human mesenchymal stromal cells (MSCs) show immunomodulatory activity in different assays both in vitro and in vivo. In previous work, the authors compared the immunomodulatory potential of independent MSC-EV preparations in a multi-donor mixed lymphocyte reaction (mdMLR) assay and an optimized steroid-refractory acute graft-versus-host disease (aGVHD) mouse model. The authors observed that only a proportion of the MSC-EV preparations showed immunomodulatory capabilities and demonstrated that only MSC-EV preparations with mdMLR immunomodulating activities were able to suppress aGVHD symptoms in vivo and vice versa. Since the mdMLR assay is complex and depends on primary human cells of different donors, the authors sought to establish an assay that is much easier to standardize and fulfills the requirements for becoming qualified as a potency assay. METHODS: The bona fide MSC antigen CD73 possesses ecto-5'-nucleotidase activity that cleaves pro-inflammatory extracellular adenosine monophosphate into anti-inflammatory adenosine and free phosphate. To test whether the ecto-5'-nucleotidase activity of the MSC-EV preparations reflected their immunomodulatory potential, the authors adopted an enzymatic assay that monitors the ecto-5'-nucleotidase activity of CD73 in a quantitative manner and compared the activity of well-characterized MSC-EV preparations containing or lacking mdMLR immunomodulatory activity. RESULTS: The authors showed that the ecto-5'-nucleotidase activity of the MSC-EV preparations did not correlate with their ability to modulate T-cell responses in the mdMLR assay and thus with their potency in improving disease symptomatology in the optimized mouse aGVHD model. Furthermore, the ecto-5'-nucleotidase activity was resistant to EV-destroying detergent treatment. CONCLUSIONS: Ecto-5'-nucleotidase activity neither reflects the potency of the authors' MSC-EV preparations nor provides any information about the integrity of the respective EVs. Thus, ecto-5'-nucleotidase enzyme activity is not indicative for the immunomodulatory potency of the authors' MSC-EV products. The development of appropriate potency assays for MSC-EV products remains challenging.


Assuntos
5'-Nucleotidase , Vesículas Extracelulares , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , 5'-Nucleotidase/imunologia , 5'-Nucleotidase/metabolismo , Detergentes/química , Vesículas Extracelulares/metabolismo , Doença Enxerto-Hospedeiro/terapia , Imunomodulação/fisiologia , Células-Tronco Mesenquimais/metabolismo
3.
Cytotherapy ; 25(8): 821-836, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055321

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. After successful treatment of a patient with acute steroid-refractory graft-versus-host disease (GVHD) using EVs prepared from conditioned media of human bone marrow-derived MSCs, this study focused on improving the MSC-EV production for clinical application. METHODS: Independent MSC-EV preparations all produced according to a standardized procedure revealed broad immunomodulatory differences. Only a proportion of the MSC-EV products applied effectively modulated immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences in vivo, at first a mouse GVHD model was optimized. RESULTS: The functional testing of selected MSC-EV preparations demonstrated that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GVHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also failed to modulate GVHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, no concrete proteins or miRNAs were identified that could serve as surrogate markers. CONCLUSIONS: Standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency before administration to patients. Here, upon comparing immunomodulating capabilities of independent MSC-EV preparations in vivo and in vitro, we found that the mdMLR assay was qualified for such analyses.


Assuntos
Vesículas Extracelulares , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Enxerto-Hospedeiro/terapia , Células-Tronco Mesenquimais/metabolismo
4.
Proteomics ; 18(7): e1700456, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436780

RESUMO

Autosomal dominant tubulointerstitial kidney disease associated to the MUC1 gene (ADTKD-MUC1; formerly MCKD1) belongs to a heterogeneous group of rare hereditary kidney diseases that is prototypically caused by frameshift mutations in the MUC1 repeat domain. The mutant MUC1 (insC) lacks the transmembrane domaine, exhibits aberant cellular topology, and hence might gain a function during the pathological process. To get insight into potential pathomechanisms we perform differential proteomics of extracellular vesicles shed by renal epithelia into the urine of patients. The study is based on three ADTKD patients and individual controls applying iTRAQ/LC-MS/MS. A total of 796 proteins were identified across all biological and technical replicates, and 298 proteins were quantified. A proportion of 47 proteins were fold-changed species. GO Term Enrichment analysis revealed proteins with significantly changed expression in ADTKD-associated extracellular vesicles as vesicular transport-associated proteins. Among these VTA1 is involved in the endosomal multivesicular body pathway associated with transport to lysosomes or export via exosomes. VTA1 is also claimed to play roles as a cofactor of the AAA ATPases VPS4A and VPS4B in the disassembly of ESCRT III. Protein interaction databases list VPS4B, CHMP2A, and IST1 as VTA1 binding partners. (Data are available via ProteomeXchange with identifier PXD008389.).


Assuntos
Transporte Biológico , Células Epiteliais/metabolismo , Lisossomos/metabolismo , Mucina-1/genética , Mutação , Rim Policístico Autossômico Dominante/genética , Cromatografia Líquida , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Mucina-1/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Proteômica , Espectrometria de Massas em Tandem
5.
J Proteome Res ; 16(2): 516-527, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28075131

RESUMO

Classical galactosemia, a hereditary metabolic disease caused by the deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), results in an impaired galactose metabolism and serious long-term developmental affection of the CNS and ovaries, potentially related in part to endogenous galactose-induced protein dysglycosylation. In search for galactose-induced changes in membrane raft proteomes of GALT-deficient cells, we performed differential analyses of lipid rafts from patient-derived (Q) and sex- and age-matched control fibroblasts (H) in the presence or absence of the stressor. Label-based proteomics revealed of the total 454 (female) or 678 (male) proteins a proportion of ∼12% in at least one of four relevant ratios as fold-changed. GALT(-) cell-specific effects in the absence of stressor revealed cell-model-dependent affection of biological processes related to protein targeting to the plasma membrane (female) or to cellular migration (male). However, a series of common galactose-induced effects were observed, among them the strongly increased ER-stress marker GRP78 and calreticulin involved in N-glycoprotein quality control. The membrane-anchored N-glycoprotein receptor CD109 was concertedly decreased under galactose-stress together with cadherin-13, GLIPR1, glypican-1, and semaphorin-7A. A series of proteins showed opposite fold-changes in the two cell models, whereas others fluctuated in only one of the two models.


Assuntos
Fibroblastos/efeitos dos fármacos , Galactose/farmacologia , Galactosemias/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Estudos de Casos e Controles , Pré-Escolar , Chaperona BiP do Retículo Endoplasmático , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Galactosemias/metabolismo , Galactosemias/patologia , Perfilação da Expressão Gênica , Ontologia Genética , Glipicanas/genética , Glipicanas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Lactente , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana , Anotação de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cultura Primária de Células , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Estresse Fisiológico , UTP-Hexose-1-Fosfato Uridililtransferase
6.
J Proteome Res ; 15(6): 1754-61, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27103203

RESUMO

Classical galactosemia is caused by a nearly complete deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), resulting in a severely impaired galactose metabolism with galactose-1-phosphate and galactitol accumulation. Even on a galactose-restricted diet, patients develop serious long-term complications of the central nervous system and ovaries that may result from chronic cell-toxic effects exerted by endogenous galactose. To address the question of whether disease-associated cellular perturbations could affect the kidney function of the patients, we performed differential proteomics of detergent-resistant membranes from urinary exovesicles. Galactosemic samples (showing drastic shifts from high-mannose to complex-type N-glycosylation on exosomal N-glycoproteins) and healthy, sex-matched controls were analyzed in quadruplex iTRAQ experiments performed in biological and technical replicates. Particularly in the female patient group, the most striking finding was a drastic increase of abundant serum (glyco)proteins, like albumin, leucine-rich α-2-glycoprotein, fetuin, immunoglobulins, prostaglandin H2 d-isomerase, and α-1-microglobulin protein (AMBP), pointing to a subclinical failure of kidney filter function in galactosemic patients and resulting in a heavy overload of exosomal membranes with adsorbed serum (glyco)proteins. Several of these proteins are connected to TBMN and IgAN, proteinuria, and renal damage. The impairment of renal protein filtration was also indicated by increased protein contents derived from extracellular matrices and lysosomes.


Assuntos
Vesículas Extracelulares/química , Galactosemias/complicações , Proteoma/análise , Insuficiência Renal/etiologia , Adulto , Estudos de Casos e Controles , Matriz Extracelular/química , Feminino , Galactosemias/diagnóstico , Glicoproteínas/análise , Glicosilação , Humanos , Rim/lesões , Lisossomos/química , Masculino , Proteômica/métodos , Insuficiência Renal/diagnóstico , Insuficiência Renal/metabolismo , Urina/citologia
7.
Hum Mutat ; 35(10): 1153-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044745

RESUMO

We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next-generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cerebelares/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação , Retina/anormalidades , Anormalidades Múltiplas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Cerebelo/anormalidades , Criança , Cílios/metabolismo , Cílios/ultraestrutura , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Técnicas de Silenciamento de Genes , Humanos , Iraque , Rim/patologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Retina/metabolismo , Retina/patologia , Peixe-Zebra
8.
Glycobiology ; 23(8): 935-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23640779

RESUMO

The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111-1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [(35)S]Met/Cys or glycans with [(3)H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [(3)H]MUC1 when compared with [(35)S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O-glycan processing from Gal1-4GlcNAc1-6(Gal1-3)GalNAc (core 2) to Gal1-3GalNAc (core 1).


Assuntos
Endossomos/metabolismo , Mucina-1/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Cães , Glicosilação , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Mucina-1/química , Mucina-1/genética , Mutação , Transporte Proteico
9.
Electrophoresis ; 34(16): 2387-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23580477

RESUMO

Heavily O-glycosylated membrane-tethered or secreted proteins often escape identification by gel-based proteomics due to weak staining and low identification rates in MS/MS. The present protocol refers to a chemical in-gel de-O-glycosylation of proteins based on repeated oxidation/elimination of glycans leaving the protein backbone intact at the gel position of the native glycoprotein. On restaining prior to spot picking, the deglycosylated proteins are detectable at increased staining intensities when applying fluorescent dyes or silver stains. Evidence shows that de-O-glycosylation of proteins in gels is efficient and does not introduce structural artifacts into the protein backbones. In-gel trypsin digestion of deglycosylated proteins, such as human glycophorin A, revealed strongly enhanced sequence coverage in LC-ESI MS/MS. The protocol is applicable in 1D and 2D gel settings within one working day.


Assuntos
Glicoproteínas/química , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Corantes/química , Eletroforese em Gel Bidimensional/métodos , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicoproteínas/análise , Glicoproteínas/metabolismo , Glicosilação , Humanos , Células MCF-7 , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tripsina/química
10.
J Extracell Biol ; 2(10): e115, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38939735

RESUMO

Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.

11.
J Proteome Res ; 11(2): 906-16, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22087537

RESUMO

A variety of genetic variations in the galactose-1-phosphate uridyltransferase (GALT) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm-Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm-Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6.


Assuntos
Exossomos/química , Galactosemias/urina , Glicoproteínas de Membrana/urina , Polissacarídeos/química , Adulto , Estudos de Casos e Controles , Feminino , Galactosemias/metabolismo , Glicômica , Glicosilação , Humanos , Masculino , Manose , Glicoproteínas de Membrana/química , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Uromodulina/urina
12.
Stem Cell Res Ther ; 13(1): 434, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056373

RESUMO

Although mesenchymal stromal cells (MSCs) from primary tissues have been successfully applied in the clinic, their expansion capabilities are limited and results are variable. MSCs derived from human-induced pluripotent stem cells (hiMSCs) are expected to overcome these limitations and serve as a reproducible and sustainable cell source. We have explored characteristics and therapeutic potential of hiMSCs in comparison to hBMSCs. RNA sequencing confirmed high resemblance, with average Pearson correlation of 0.88 and Jaccard similarity index of 0.99, and similar to hBMSCs the hiMSCs released extracellular vesicles with in vitro immunomodulatory properties. Potency assay with TNFα and IFNγ demonstrated an increase in well-known immunomodulatory genes such as IDO1, CXCL8/IL8, and HLA-DRA which was also highlighted by enhanced secretion in the media. Notably, expression of 125 genes increased more than 1000-fold. These genes were predicted to be regulated by NFΚB signaling, known to play a central role in immune response. Altogether, our data qualify hiMSCs as a promising source for cell therapy and/or cell-based therapeutic products. Additionally, the herewith generated database will add to our understanding of the mode of action of regenerative cell-based therapies and could be used to identify relevant potency markers.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Terapia Baseada em Transplante de Células e Tecidos , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Secretoma
13.
Proteomics ; 11(22): 4397-410, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21901833

RESUMO

Distinct types of vesicles are formed in eukaryotic cells that conduct a variable set of functions depending on their origin. One subtype designated circulating microvesicles (MVs) provides a novel form of intercellular communication and recent work suggested the release and uptake of morphogens in vesicles by Drosophila cells. In this study, we have examined cells of the hemocyte-like cell lines Kc167 and S2 and identified secreted vesicles in the culture supernatant. The vesicles were isolated and found to have characteristics comparable to exosomes and plasma membrane MVs released by mammalian cells. In wingless-transfected cells, the full-length protein was detected in the vesicle isolates. Proteomics analyses of the vesicles identified 269 proteins that include various orthologs of marker proteins and proteins with putative functions in vesicle formation and release. Analogous to their mammalian counterparts, the subcellular origin of the vesicular constituents of both cell lines is dominated by membrane-associated and cytosolic proteins with functions that are consistent with their localization in MVs. The analyses revealed a significant overlap of the Kc167 and S2 vesicle proteomes and confirmed a close correlation with non-mammalian and mammalian exosomes.


Assuntos
Drosophila/química , Exossomos/química , Proteínas de Insetos/análise , Proteoma/análise , Animais , Western Blotting , Linhagem Celular , Centrifugação com Gradiente de Concentração , Exossomos/metabolismo , Proteínas de Insetos/química , Proteoma/química , Proteômica , Ubiquitina
14.
Expert Rev Proteomics ; 8(2): 263-77, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21501018

RESUMO

Lipid rafts are defined as microdomains within the lipid bilayer of cellular membranes that assemble subsets of transmembrane or glycosylphosphatidylinisotol-anchored proteins and lipids (cholesterol and sphingolipids) and experimentally resist extraction in cold detergent (detergent-resistant membrane). These highly dynamic raft domains are essential in signaling processes and also form sorting platforms for targeted protein traffic. Lipid rafts are involved in protein endocytosis that occurs via caveolae or flotillin-dependent pathways. Non-constitutive protein components of rafts fluctuate dramatically in cancer with impacts on cell proliferation, signaling, protein trafficking, adhesion and apoptosis. This article focuses on the identification of candidate cancer-associated biomarkers in carcinoma cells using state-of-the-art proteomics.


Assuntos
Biomarcadores Tumorais/metabolismo , Microdomínios da Membrana/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Modelos Biológicos , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
15.
Adv Drug Deliv Rev ; 177: 113940, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419502

RESUMO

Extracellular vesicles (EVs) especially of mesenchymal stem/stomal cells (MSCs) are increasingly considered as biotherapeutic agents for a variety of different diseases. For translating them effectively into the clinics, scalable production processes fulfilling good manufacturing practice (GMP) are needed. Like for other biotherapeutic agents, the manufacturing of EV products can be subdivided in the upstream and downstream processing and the subsequent quality control, each of them containing several unit operations. During upstream processing (USP), cells are isolated, stored (cell banking) and expanded; furthermore, EV-containing conditioned media are produced. During downstream processing (DSP), conditioned media (CM) are processed to obtain concentrated and purified EV products. CM are either stored until DSP or are directly processed. As first unit operation in DSP, clarification removes remaining cells, debris and other larger impurities. The key operations of each EV DSP is volume-reduction combined with purification of the concentrated EVs. Most of the EV preparation methods used in conventional research labs including differential centrifugation procedures are limited in their scalability. Consequently, it is a major challenge in the therapeutic EV field to identify appropriate EV concentration and purification methods allowing scale up. As EVs share several features with enveloped viruses, that are used for more than two decades in the clinics now, several principles can be adopted to EV manufacturing. Here, we introduce and discuss volume reducing and purification methods frequently used for viruses and analyze their value for the manufacturing of EV-based therapeutics.


Assuntos
Meios de Cultivo Condicionados , Vesículas Extracelulares , Animais , Precipitação Química , Cromatografia , Filtração , Humanos , Polímeros , Ultracentrifugação , Vírus
16.
Curr Protoc Stem Cell Biol ; 55(1): e128, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956560

RESUMO

Mesenchymal stem/stromal cells (MSCs) provide therapeutic effects in many diseases. Contrary to initial hypotheses, they act in a paracrine rather than a cellular manner. To this end, extracellular vesicles (EVs) have been found to mediate the therapeutic effects, even when harvested from MSC-conditioned cell culture supernatants. Lacking self-replicating activity and being so small that MSC-EV preparations can be sterilized by filtration, EVs provide several advantages as therapeutic agents over cellular therapeutics. At present, methods allowing EV preparation from larger volumes are scarce and regularly require special equipment. We have developed a polyethylene glycol-based precipitation protocol allowing extraction of EVs from several liters of conditioned medium. MSC-EVs prepared with this method have been successfully applied to a human graft-versus-host disease patient and to several animal models. Although the method comes with its own limitations, it is extremely helpful for the initial evaluation of EV-based therapeutic approaches. Here, we introduce the technique in detail and discuss all critical steps. © 2020 The Authors. Basic Protocol 1: Preparation of MSC-conditioned medium for scaled MSC-EV production Basic Protocol 2: PEG precipitation OF MSC-EV from MSC-conditioned medium.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
17.
Microorganisms ; 8(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321840

RESUMO

Echovirus-30 (E-30) is a non-polio enterovirus responsible for meningitis outbreaks in children worldwide. To gain access to the central nervous system (CNS), E-30 first has to cross the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BCSFB). E-30 may use lipid rafts of the host cells to interact with and to invade the BCSFB. To study enteroviral infection of the BCSFB, an established in vitro model based on human immortalized brain choroid plexus papilloma (HIBCPP) cells has been used. Here, we investigated the impact of E-30 infection on the protein content of the lipid rafts at the BCSFB in vitro. Mass spectrometry analysis following E-30 infection versus uninfected conditions revealed differential abundancy in proteins implicated in cellular adhesion, cytoskeleton remodeling, and endocytosis/vesicle budding. Further, we evaluated the blocking of endocytosis via clathrin/dynamin blocking and its consequences for E-30 induced barrier disruption. Interestingly, blocking of endocytosis had no impact on the capacity of E-30 to induce loss of barrier properties in HIBCPP cells. Altogether, these data highlight the impact of E-30 on HIBCPP cells microdomain as an important factor for host cell alteration.

18.
Proteomics ; 9(10): 2820-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19415654

RESUMO

Apically expressed human MUC1 is known to become endocytosed and either to re-enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi-vesicular bodies and the release of exosomes. By using recombinant fusion-tagged MUC1 as a bait protein we followed an anti-myc affinity-based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF-7 breast cancer cells. MUC1(+) lipid rafts were not only found to contain genuine raft proteins (flotillin-1, prohibitin, G protein, annexin A2), but also raft-associated proteins linking these to the cytoskeleton (ezrin/villin-2, profilin II, HSP27, gamma-actin, beta-actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin-dependent pathways and export via exosomes.


Assuntos
Neoplasias da Mama/química , Exossomos/química , Microdomínios da Membrana/química , Mucina-1/análise , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/análise , Feminino , Proteínas de Choque Térmico/análise , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mucina-1/metabolismo , Proteínas Proto-Oncogênicas c-myc/análise , Proteínas Recombinantes de Fusão , Reprodutibilidade dos Testes
19.
Sci Rep ; 8(1): 4170, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520014

RESUMO

Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel sequencing methods due to the complexity of the VNTR. We established long read single molecule real time sequencing (SMRT) targeted to the MUC1-VNTR as an alternative strategy to the snapshot assay. Our approach allows complete VNTR assembly, thereby enabling the detection of all variants residing within the VNTR and simultaneous determination of VNTR length. We present high resolution data on the VNTR architecture for a cohort of snapshot positive (n = 9) and negative (n = 7) ADTKD families. By SMRT sequencing we could confirm the diagnosis in all previously tested cases, reconstruct both VNTR alleles and determine the exact position of the causative variant in eight of nine families. This study demonstrates that precise positioning of the causative mutation(s) and identification of other coding and noncoding sequence variants in ADTKD-MUC1 is feasible. SMRT sequencing could provide a powerful tool to uncover potential factors encoded within the VNTR that associate with intra- and interfamilial phenotype variability of MUC1 related kidney disease.


Assuntos
Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Repetições Minissatélites , Mucina-1/genética , Rim Policístico Autossômico Dominante/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Masculino
20.
Methods Mol Biol ; 842: 123-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22259133

RESUMO

MUC1 is normally apical in polarized epithelial cells but is aberrantly localized in tumor cells. To better understand the mechanism of this altered localization as well as the normal functions of MUC1, we are focused on characterizing the features of MUC1 that regulate the membrane trafficking of this mucin-like transmembrane protein. Previous studies using heterologous expression of MUC1 in CHO and MDCK cells revealed that trafficking to the cell surface as well as endocytosis and recycling is modulated by glycosylation, palmitoylation, and docking of adaptor protein complexes. Protocols for assessing MUC1 trafficking have utilized membrane-impermeant cell surface biotinylation and subsequent stripping with reducing reagents, such as MESNA. The cumulative data have been used for computer modeling and calculation of rate constants. As MUC1 is released through trafficking to exosomes, we have devised protocols for the affinity isolation of MUC1-containing lipid rafts from nanovesicular subpopulations to perform proteomic mapping of protein constituents in these sorting platforms. Our studies to date have shown that plasma membranous MUC1 traffics via lipid raft-associated pathways to exosomes, which are independent of caveolin-1 or dynamin, but dependent on flotillin.


Assuntos
Membrana Celular/metabolismo , Endocitose , Exossomos/metabolismo , Mucina-1/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cães , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Mucina-1/biossíntese , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA