Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757764

RESUMO

Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition. In vitro uptake of Advax particles by macrophage cell lines was substantially greater than that of latex beads of comparable size, suggesting an active uptake mechanism by phagocytic cells. Using a lectin array, Advax particles were recognized by lectins specific for various carbohydrate structures including mannosyl, N-acetylgalactosamine and galactose moieties. Expression in nonphagocytic cells of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), a C-type lectin receptor, resulted in enhanced uptake of fluorescent Advax particles compared with mock-transfected cells. Advax uptake was reduced with the addition of ethylenediaminetetraacetic acid and mannan to cells, which are known inhibitors of DC-SIGN function. Finally, a specific blockade of DC-SIGN using a neutralizing antibody abrogated Advax uptake in DC-SIGN-expressing cells. Together, these results identify DC-SIGN as a putative receptor for Advax. Given the known immunomodulatory role of DC-SIGN, the findings described here have implications for the use of Advax adjuvants in humans and inform future mechanistic studies.

2.
Curr Top Microbiol Immunol ; 438: 59-73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35624346

RESUMO

Like other herpesviruses, varicella-zoster virus (VZV) evolved a wide range of functions to modulate a broad array of host defences, presumably as a means to provide a survival advantage to the virus during infection. In addition to control of components of the adaptive immune response, VZV also modulates a range of innate responses. In this context, it has become increasingly apparent that VZV encodes specific functions that interfere with programmed cell death (PCD) pathways. This review will overview the current understanding of VZV-mediated control of PCD pathways, focussing on the three most well-defined PCD pathways: apoptosis, necroptosis and pyroptosis. We will also discuss future directions about these PCD pathways that are yet to be explored in the context of VZV infection.


Assuntos
Apoptose , Herpesvirus Humano 3 , Herpesvirus Humano 3/fisiologia , Imunidade Adaptativa
3.
J Infect Dis ; 227(3): 391-401, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648018

RESUMO

The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.


Assuntos
Herpesvirus Humano 3 , Antígenos de Histocompatibilidade Classe I , Animais , Herpesvirus Humano 3/genética , Ligantes , Antígenos de Histocompatibilidade Menor , Complexo Principal de Histocompatibilidade , Mamíferos
4.
Emerg Infect Dis ; 29(2): 381-388, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692375

RESUMO

Several studies have shown that neutralizing antibody levels correlate with immune protection from COVID-19 and have estimated the relationship between neutralizing antibodies and protection. However, results of these studies vary in terms of estimates of the level of neutralizing antibodies required for protection. By normalizing antibody titers, we found that study results converge on a consistent relationship between antibody levels and protection from COVID-19. This finding can be useful for planning future vaccine use, determining population immunity, and reducing the global effects of the COVID-19 pandemic.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
5.
Semin Cell Dev Biol ; 99: 86-95, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29738881

RESUMO

The Receptor-interacting protein kinase Homotypic Interaction Motif (RHIM) is an amino acid sequence that mediates multiple protein:protein interactions in the mammalian programmed cell death pathway known as necroptosis. At least one key RHIM-based complex has been shown to have a functional amyloid fibril structure, which provides a stable hetero-oligomeric platform for downstream signaling. RHIMs and related motifs are present in immunity-related proteins across nature, from viruses to fungi to metazoans. Necroptosis is a hallmark feature of cellular clearance of infection. For this reason, numerous pathogens, including viruses and bacteria, have developed varied methods to modulate necroptosis, focusing on inhibiting RHIM:RHIM interactions, and thus their downstream cell death effects. This review will discuss current understanding of RHIM:RHIM interactions in normal cellular activation of necroptosis, from a structural and cell biology perspective. It will compare the mechanisms by which pathogens subvert these interactions in order to maintain their replicative and infective cycles and consider the similarities between RHIMs and other functional amyloid-forming proteins associated with cell death and innate immunity. It will discuss the implications of the heteromeric nature and structure of RHIM-based amyloid complexes in the context of other functional amyloids.


Assuntos
Apoptose/imunologia , Necroptose/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
Clin Infect Dis ; 75(1): e878-e879, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35100611

RESUMO

The vaccine candidate CVnCoV (CUREVAC) showed surprisingly low efficacy in a recent phase 3 trial compared with other messenger RNA (mRNA) vaccines. Here we show that the low efficacy follows from the dose used and the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and is predicted by the neutralizing antibody response induced by the vaccine.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
7.
PLoS Pathog ; 16(7): e1008473, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32649716

RESUMO

Herpesviruses are known to encode a number of inhibitors of host cell death, including RIP Homotypic Interaction Motif (RHIM)-containing proteins. Varicella zoster virus (VZV) is a member of the alphaherpesvirus subfamily and is responsible for causing chickenpox and shingles. We have identified a novel viral RHIM in the VZV capsid triplex protein, open reading frame (ORF) 20, that acts as a host cell death inhibitor. Like the human cellular RHIMs in RIPK1 and RIPK3 that stabilise the necrosome in TNF-induced necroptosis, and the viral RHIM in M45 from murine cytomegalovirus that inhibits cell death, the ORF20 RHIM is capable of forming fibrillar functional amyloid complexes. Notably, the ORF20 RHIM forms hybrid amyloid complexes with human ZBP1, a cytoplasmic sensor of viral nucleic acid. Although VZV can inhibit TNF-induced necroptosis, the ORF20 RHIM does not appear to be responsible for this inhibition. In contrast, the ZBP1 pathway is identified as important for VZV infection. Mutation of the ORF20 RHIM renders the virus incapable of efficient spread in ZBP1-expressing HT-29 cells, an effect which can be reversed by the inhibition of caspases. Therefore we conclude that the VZV ORF20 RHIM is important for preventing ZBP1-driven apoptosis during VZV infection, and propose that it mediates this effect by sequestering ZBP1 into decoy amyloid assemblies.


Assuntos
Morte Celular/fisiologia , Herpesvirus Humano 3/metabolismo , Proteínas de Ligação a RNA/metabolismo , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Proteínas Virais/metabolismo , Animais , Humanos , Camundongos
8.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684320

RESUMO

TIR-domain-containing adapter-inducing interferon-ß (TRIF) is an innate immune protein that serves as an adaptor for multiple cellular signalling outcomes in the context of infection. TRIF is activated via ligation of Toll-like receptors 3 and 4. One outcome of TRIF-directed signalling is the activation of the programmed cell death pathway necroptosis, which is governed by interactions between proteins that contain a RIP Homotypic Interaction Motif (RHIM). TRIF contains a RHIM sequence and can interact with receptor interacting protein kinases 1 (RIPK1) and 3 (RIPK3) to initiate necroptosis. Here, we demonstrate that the RHIM of TRIF is amyloidogenic and supports the formation of homomeric TRIF-containing fibrils. We show that the core tetrad sequence within the RHIM governs the supramolecular organisation of TRIF amyloid assemblies, although the stable amyloid core of TRIF amyloid fibrils comprises a much larger region than the conserved RHIM only. We provide evidence that RHIMs of TRIF, RIPK1 and RIPK3 interact directly to form heteromeric structures and that these TRIF-containing hetero-assemblies display altered and emergent properties that likely underlie necroptosis signalling in response to Toll-like receptor activation.


Assuntos
Amiloide , Necroptose , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Amiloide/metabolismo , Apoptose/fisiologia
9.
PLoS Pathog ; 15(6): e1007784, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194857

RESUMO

Natural killer (NK) cells are implicated as important anti-viral immune effectors in varicella zoster virus (VZV) infection. VZV can productively infect human NK cells, yet it is unknown how, or if, VZV can directly affect NK cell function. Here we demonstrate that VZV potently impairs the ability of NK cells to respond to target cell stimulation in vitro, leading to a loss of both cytotoxic and cytokine responses. Remarkably, not only were VZV infected NK cells affected, but VZV antigen negative NK cells that were exposed to virus in culture were also inhibited. This powerful impairment of function was dependent on direct contact between NK cells and VZV infected inoculum cells. Profiling of the NK cell surface receptor phenotype by multiparameter flow cytometry revealed that functional receptor expression is predominantly stable. Furthermore, inhibited NK cells were still capable of releasing cytotoxic granules when the stimulation signal bypassed receptor/ligand interactions and early signalling, suggesting that VZV paralyses NK cells from responding. Phosflow examination of key components in the degranulation signalling cascade also demonstrated perturbation following culture with VZV. In addition to inhibiting degranulation, IFN-γ and TNF production were also repressed by VZV co-culture, which was most strongly regulated in VZV infected NK cells. Interestingly, the closely related virus, herpes simplex virus type 1 (HSV-1), was also capable of efficiently infecting NK cells in a cell-associated manner, and demonstrated a similar capacity to render NK cells unresponsive to target cell stimulation-however HSV-1 differentially targeted cytokine production compared to VZV. Our findings progress a growing understanding of pathogen inhibition of NK cell function, and reveal a previously unreported strategy for VZV to manipulate the immune response.


Assuntos
Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 3/imunologia , Células Matadoras Naturais/imunologia , Transdução de Sinais/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Animais , Chlorocebus aethiops , Herpes Simples/patologia , Humanos , Interferon gama/imunologia , Células Matadoras Naturais/patologia , Fator de Necrose Tumoral alfa/imunologia , Células Vero
10.
EMBO Rep ; 20(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30498077

RESUMO

The murine cytomegalovirus protein M45 protects infected mouse cells from necroptotic death and, when heterologously expressed, can protect human cells from necroptosis induced by tumour necrosis factor receptor (TNFR) activation. Here, we show that the N-terminal 90 residues of the M45 protein, which contain a RIP homotypic interaction motif (RHIM), are sufficient to confer protection against TNFR-induced necroptosis. This N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils and interacts with the RHIMs of the human kinases RIPK1 and RIPK3, and the Z-DNA binding protein 1 (ZBP1), to form heteromeric amyloid fibrils in vitro Mutation of the tetrad residues in the M45 RHIM attenuates homo- and hetero-amyloid assembly by M45, suggesting that the amyloidogenic nature of the M45 RHIM underlies its biological activity. The M45 RHIM preferentially interacts with RIPK3 and ZBP1 over RIPK1 and alters the properties of the host RHIM protein assemblies. Our results indicate that M45 mimics the interactions made by RIPK1 or ZBP1 with RIPK3, thereby forming heteromeric amyloid structures, which may explain its ability to inhibit necroptosis.


Assuntos
Amiloide/metabolismo , Necroptose , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/metabolismo , Amiloide/química , Amiloide/ultraestrutura , Amiloidose/etiologia , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ribonucleotídeo Redutases/química , Relação Estrutura-Atividade , Proteínas Virais/química
11.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404793

RESUMO

Varicella-zoster virus (VZV) is associated with viremia during primary infection that is presumed to stem from infection of circulating immune cells. While VZV has been shown to be capable of infecting a number of different subsets of circulating immune cells, such as T cells, dendritic cells, and NK cells, less is known about the interaction between VZV and monocytes. Here, we demonstrate that blood-derived human monocytes are permissive to VZV replication in vitro VZV-infected monocytes exhibited each temporal class of VZV gene expression, as evidenced by immunofluorescent staining. VZV virions were observed on the cell surface and viral nucleocapsids were observed in the nucleus of VZV-infected monocytes by scanning electron microscopy. In addition, VZV-infected monocytes were able to transfer infectious virus to human fibroblasts. Infected monocytes displayed impaired dextran-mediated endocytosis, and cell surface immunophenotyping revealed the downregulation of CD14, HLA-DR, CD11b, and the macrophage colony-stimulating factor (M-CSF) receptor. Analysis of the impact of VZV infection on M-CSF-stimulated monocyte-to-macrophage differentiation demonstrated the loss of cell viability, indicating that VZV-infected monocytes were unable to differentiate into viable macrophages. In contrast, macrophages differentiated from monocytes prior to exposure to VZV were highly permissive to infection. This study defines the permissiveness of these myeloid cell types to productive VZV infection and identifies the functional impairment of VZV-infected monocytes.IMPORTANCE Primary VZV infection results in the widespread dissemination of the virus throughout the host. Viral transportation is known to be directly influenced by susceptible immune cells in the circulation. Moreover, infection of immune cells by VZV results in attenuation of the antiviral mechanisms used to control infection and limit spread. Here, we provide evidence that human monocytes, which are highly abundant in the circulation, are permissive to productive VZV infection. Furthermore, monocyte-derived macrophages were also highly permissive to VZV infection, although VZV-infected monocytes were unable to differentiate into macrophages. Exploring the relationships between VZV and permissive immune cells, such as human monocytes and macrophages, elucidates novel immune evasion strategies and provides further insight into the control that VZV has over the immune system.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Macrófagos/citologia , Monócitos/citologia , Infecção pelo Vírus da Varicela-Zoster/patologia , Vírion , Replicação Viral , Antígenos Virais/metabolismo , Sobrevivência Celular , Células Cultivadas , Endocitose , Fibroblastos/metabolismo , Fibroblastos/virologia , Herpesvirus Humano 3/isolamento & purificação , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Monócitos/metabolismo , Monócitos/virologia , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Infecção pelo Vírus da Varicela-Zoster/virologia
12.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462576

RESUMO

Immune regulation of alphaherpesvirus latency and reactivation is critical for the control of virus pathogenesis. This is evident for herpes simplex virus 1 (HSV-1), where cytotoxic T lymphocytes (CTLs) prevent viral reactivation independent of apoptosis induction. This inhibition of HSV-1 reactivation has been attributed to granzyme B cleavage of HSV infected cell protein 4 (ICP4); however, it is unknown whether granzyme B cleavage of ICP4 can directly protect cells from CTL cytotoxicity. Varicella zoster virus (VZV) is closely related to HSV-1; however, it is unknown whether VZV proteins contain granzyme B cleavage sites. Natural killer (NK) cells play a central role in VZV and HSV-1 pathogenesis and, like CTLs, utilize granzyme B to kill virally infected target cells. However, whether alphaherpesvirus granzyme B cleavage sites could modulate NK cell-mediated cytotoxicity has yet to be established. This study aimed to identify novel HSV-1 and VZV gene products with granzyme B cleavage sites and assess whether they could protect cells from NK cell-mediated cytotoxicity. We have demonstrated that HSV ICP27, VZV open reading frame 62 (ORF62), and VZV ORF4 are cleaved by granzyme B. However, in an NK cell cytotoxicity assay, only VZV ORF4 conferred protection from NK cell-mediated cytotoxicity. The granzyme B cleavage site in ORF4 was identified via site-directed mutagenesis and, surprisingly, the mutation of this cleavage site did not alter the ability of ORF4 to modulate NK cell cytotoxicity, suggesting that ORF4 has a novel immunoevasive function that is independent from the granzyme B cleavage site.IMPORTANCE HSV-1 causes oral and genital herpes and establishes life-long latency in sensory ganglia. HSV-1 reactivates multiple times in a person's life and can cause life-threatening disease in immunocompromised patients. VZV is closely related to HSV-1, causes chickenpox during primary infection, and establishes life-long latency in ganglia, from where it can reactivate to cause herpes zoster (shingles). Unlike HSV-1, VZV only infects humans, and there are limited model systems; thus, little is known concerning how VZV maintains latency and why VZV reactivates. Through studying the link between immune cell cytotoxic functions, granzyme B, and viral gene products, an increased understanding of viral pathogenesis will be achieved.


Assuntos
Granzimas/genética , Granzimas/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 3/metabolismo , Células Matadoras Naturais/imunologia , Linhagem Celular , Varicela/virologia , Gânglios/virologia , Células HEK293 , Herpes Zoster/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Células Matadoras Naturais/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Proteínas Virais/genética , Latência Viral
13.
PLoS Pathog ; 14(4): e1006999, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709039

RESUMO

Varicella zoster virus (VZV) is a ubiquitous human alphaherpesvirus, responsible for varicella upon primary infection and herpes zoster following reactivation from latency. To establish lifelong infection, VZV employs strategies to evade and manipulate the immune system to its advantage in disseminating virus. As innate lymphocytes, natural killer (NK) cells are part of the early immune response to infection, and have been implicated in controlling VZV infection in patients. Understanding of how VZV directly interacts with NK cells, however, has not been investigated in detail. In this study, we provide the first evidence that VZV is capable of infecting human NK cells from peripheral blood in vitro. VZV infection of NK cells is productive, supporting the full kinetic cascade of viral gene expression and producing new infectious virus which was transmitted to epithelial cells in culture. We determined by flow cytometry that NK cell infection with VZV was not only preferential for the mature CD56dim NK cell subset, but also drove acquisition of the terminally-differentiated maturity marker CD57. Interpretation of high dimensional flow cytometry data with tSNE analysis revealed that culture of NK cells with VZV also induced a potent loss of expression of the low-affinity IgG Fc receptor CD16 on the cell surface. Notably, VZV infection of NK cells upregulated surface expression of chemokine receptors associated with trafficking to the skin -a crucial site in VZV disease where highly infectious lesions develop. We demonstrate that VZV actively manipulates the NK cell phenotype through productive infection, and propose a potential role for NK cells in VZV pathogenesis.


Assuntos
Herpesvirus Humano 3/patogenicidade , Células Matadoras Naturais/patologia , Pele/patologia , Linfócitos T/patologia , Infecção pelo Vírus da Varicela-Zoster/patologia , Latência Viral , Replicação Viral , Antígenos CD57/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Fenótipo , Pele/imunologia , Pele/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia
14.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29593042

RESUMO

There are many facets of varicella-zoster virus (VZV) pathogenesis that are not fully understood, such as the mechanisms involved in the establishment of lifelong latency, reactivation, and development of serious conditions like postherpetic neuralgia (PHN). Virus-encoded modulation of apoptosis has been suggested to play an important role in these processes. VZV open reading frame 63 (ORF63) has been shown to modulate apoptosis in a cell-type-specific manner, but the impact of ORF63 on cell death pathways has not been examined in isolation in the context of human cells. We sought to elucidate the effect of VZV ORF63 on apoptosis induction in human neuron and keratinocyte cell lines. VZV ORF63 was shown to protect differentiated SH-SY5Y neuronal cells against staurosporine-induced apoptosis. In addition, VZV infection did not induce high levels of apoptosis in the HaCaT human keratinocyte line, highlighting a delay in apoptosis induction. VZV ORF63 was shown to protect HaCaT cells against both staurosporine- and Fas ligand-induced apoptosis. Confocal microscopy was utilized to examine VZV ORF63 localization during apoptosis induction. In VZV infection and ORF63 expression alone, VZV ORF63 became more cytoplasmic, with aggregate formation during apoptosis induction. Taken together, this suggests that VZV ORF63 protects both differentiated SH-SY5Y cells and HaCaT cells from apoptosis induction and may mediate this effect through its localization change during apoptosis. VZV ORF63 is a prominent VZV gene product in both productive and latent infection and thus may play a critical role in VZV pathogenesis by aiding neuron and keratinocyte survival.IMPORTANCE VZV, a human-specific alphaherpesvirus, causes chicken pox during primary infection and establishes lifelong latency in the dorsal root ganglia (DRG). Reactivation of VZV causes shingles, which is often followed by a prolonged pain syndrome called postherpetic neuralgia. It has been suggested that the ability of the virus to modulate cell death pathways is linked to its ability to establish latency and reactivate. The significance of our research lies in investigating the ability of ORF63, a VZV gene product, to inhibit apoptosis in novel cell types crucial for VZV pathogenesis. This will allow an increased understanding of critical enigmatic components of VZV pathogenesis.


Assuntos
Apoptose/fisiologia , Herpesvirus Humano 3/genética , Proteínas Imediatamente Precoces/metabolismo , Queratinócitos/metabolismo , Neurônios/metabolismo , Proteínas do Envelope Viral/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Gânglios Espinais/virologia , Herpes Zoster/patologia , Herpes Zoster/virologia , Herpesvirus Humano 3/patogenicidade , Humanos , Proteínas Imediatamente Precoces/genética , Queratinócitos/citologia , Neurônios/citologia , Estaurosporina/farmacologia , Proteínas do Envelope Viral/genética , Latência Viral/genética
15.
J Virol ; 90(8): 3819-3827, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792743

RESUMO

UNLABELLED: The human cytomegalovirus (HCMV) gene UL111A encodes cytomegalovirus-encoded human interleukin-10 (cmvIL-10), a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). This viral homolog exhibits a range of immunomodulatory functions, including suppression of proinflammatory cytokine production and dendritic cell (DC) maturation, as well as inhibition of major histocompatibility complex (MHC) class I and class II. Here, we present data showing that cmvIL-10 upregulates hIL-10, and we identify CD14(+)monocytes and monocyte-derived macrophages and DCs as major sources of hIL-10 secretion in response to cmvIL-10. Monocyte activation was not a prerequisite for cmvIL-10-mediated upregulation of hIL-10, which was dose dependent and controlled at the transcriptional level. Furthermore, cmvIL-10 upregulated expression of tumor progression locus 2 (TPL2), which is a regulator of the positive hIL-10 feedback loop, whereas expression of a negative regulator of the hIL-10 feedback loop, dual-specificity phosphatase 1 (DUSP1), remained unchanged. Engagement of the hIL-10 receptor (hIL-10R) by cmvIL-10 led to upregulation of heme oxygenase 1 (HO-1), an enzyme linked with suppression of inflammatory responses, and this upregulation was required for cmvIL-10-mediated upregulation of hIL-10. We also demonstrate an important role for both phosphatidylinositol 3-kinase (PI3K) and STAT3 in the upregulation of HO-1 and hIL-10 by cmvIL-10. In addition to upregulating hIL-10, cmvIL-10 could exert a direct immunomodulatory function, as demonstrated by its capacity to upregulate expression of cell surface CD163 when hIL-10 was neutralized. This study identifies a mechanistic basis for cmvIL-10 function, including the capacity of this viral cytokine to potentially amplify its immunosuppressive impact by upregulating hIL-10 expression. IMPORTANCE: Human cytomegalovirus (HCMV) is a large, double-stranded DNA virus that causes significant human disease, particularly in the congenital setting and in solid-organ and hematopoietic stem cell transplant patients. A prominent feature of HCMV is the wide range of viral gene products that it encodes which function to modulate host defenses. One of these is cmvIL-10, which is a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). In this study, we report that, in addition to exerting a direct biological impact, cmvIL-10 upregulates the expression of hIL-10 by primary blood-derived monocytes and that it does so by modulating existing cellular pathways. This capacity of cmvIL-10 to upregulate hIL-10 represents a mechanism by which HCMV may amplify its immunomodulatory impact during infection.


Assuntos
Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Interleucina-10/genética , Monócitos/virologia , Proteínas Virais/fisiologia , Células Cultivadas , Citomegalovirus/imunologia , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Interleucina-10/metabolismo , Receptores de Lipopolissacarídeos , Monócitos/imunologia , Monócitos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima , Proteínas Virais/genética
16.
J Virol ; 89(15): 7932-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995251

RESUMO

UNLABELLED: Natural killer (NK) cell-deficient patients are particularly susceptible to severe infection with herpesviruses, especially varicella-zoster virus (VZV) and herpes simplex virus 1 (HSV-1). The critical role that NK cells play in controlling these infections denotes an intricate struggle for dominance between virus and NK cell antiviral immunity; however, research in this area has remained surprisingly limited. Our study addressed this absence of knowledge and found that infection with VZV was not associated with enhanced NK cell activation, suggesting that the virus uses specific mechanisms to limit NK cell activity. Analysis of viral regulation of ligands for NKG2D, a potent activating receptor ubiquitously expressed on NK cells, revealed that VZV differentially modulates expression of the NKG2D ligands MICA, ULBP2, and ULBP3 by upregulating MICA expression while reducing ULBP2 and ULBP3 expression on the surface of infected cells. Despite being closely related to VZV, infection with HSV-1 produced a remarkably different effect on NKG2D ligand expression. A significant decrease in MICA, ULBP2, and ULBP3 was observed with HSV-1 infection at a total cellular protein level, as well as on the cell surface. We also demonstrate that HSV-1 differentially regulates expression of an additional NKG2D ligand, ULBP1, by reducing cell surface expression while total protein levels are unchanged. Our findings illustrate both a striking point of difference between two closely related alphaherpesviruses, as well as suggest a powerful capacity for VZV and HSV-1 to evade antiviral NK cell activity through novel modulation of NKG2D ligand expression. IMPORTANCE: Patients with deficiencies in NK cell function experience an extreme susceptibility to infection with herpesviruses, in particular, VZV and HSV-1. Despite this striking correlation, research into understanding how these two alphaherpesviruses interact with NK cells is surprisingly limited. Through examination of viral regulation of ligands to the activating NK cell receptor NKG2D, we reveal patterns of modulation by VZV, which were unexpectedly varied in response to regulation by HSV-1 infection. Our study begins to unravel the undoubtedly complex interactions that occur between NK cells and alphaherpesvirus infection by providing novel insights into how VZV and HSV-1 manipulate NKG2D ligand expression to modulate NK cell activity, while also illuminating a distinct variation between two closely related alphaherpesviruses.


Assuntos
Herpes Simples/genética , Herpes Zoster/genética , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 3/fisiologia , Antígenos de Histocompatibilidade Classe I/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Linhagem Celular , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Zoster/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Células Matadoras Naturais/imunologia , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia
17.
J Virol ; 88(5): 2704-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352459

RESUMO

UNLABELLED: Varicella-zoster virus (VZV) is responsible for both varicella (chickenpox) and herpes zoster (shingles). During varicella, the virus establishes latency within the sensory ganglia and can reactivate to cause herpes zoster, but the immune responses that occur in ganglia during herpes zoster have not previously been defined. We examined ganglia obtained from individuals who, at the time of death, had active herpes zoster. Ganglia innervating the site of the cutaneous herpes zoster rash showed evidence of necrosis, secondary to vasculitis, or localized hemorrhage. Despite this, there was limited evidence of VZV antigen expression, although a large inflammatory infiltrate was observed. Characterization of the infiltrating T cells showed a large number of infiltrating CD4(+) T cells and cytolytic CD8(+) T cells. Many of the infiltrating T cells were closely associated with neurons within the reactivated ganglia, yet there was little evidence of T cell-induced neuronal apoptosis. Notably, an upregulation in the expression of major histocompatibility complex class I (MHC-I) and MHC-II molecules was observed on satellite glial cells, implying these cells play an active role in directing the immune response during herpes zoster. This is the first detailed characterization of the interaction between T cells and neuronal cells within ganglia obtained from patients suffering herpes zoster at the time of death and provides evidence that CD4(+) and cytolytic CD8(+) T cell responses play an important role in controlling VZV replication in ganglia during active herpes zoster. IMPORTANCE: VZV is responsible for both varicella (chickenpox) and herpes zoster (shingles). During varicella, the virus establishes a life-long dormant infection within the sensory ganglia and can reawaken to cause herpes zoster, but the immune responses that occur in ganglia during herpes zoster have not previously been defined. We examined ganglia obtained from individuals who, at the time of death, had active herpes zoster. We found that specific T cell subsets are likely to play an important role in controlling VZV replication in ganglia during active herpes zoster.


Assuntos
Gânglios Sensitivos/imunologia , Gânglios Sensitivos/virologia , Herpes Zoster/imunologia , Herpesvirus Humano 3/fisiologia , Subpopulações de Linfócitos T/imunologia , Ativação Viral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Caspase 3/metabolismo , Criança , Feminino , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/patologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/imunologia , Neurônios/patologia , Neurônios/virologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Adulto Jovem
18.
J Virol ; 87(24): 13719-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109230

RESUMO

Neurons of the sensory ganglia are the major site of varicella-zoster virus (VZV) latency and may undergo productive infection during reactivation. Although the VZV glycoprotein E/glycoprotein I (gE/gI) complex is known to be critical for neurovirulence, few studies have assessed the roles of these proteins during infection of dorsal root ganglia (DRG) due to the high human specificity of the virus. Here, we show that the VZV glycoprotein I gene is an important neurotropic gene responsible for mediating the spread of virus in neuronal cultures and explanted DRG. Inoculation of differentiated SH-SY5Y neuronal cell cultures with a VZV gI gene deletion strain (VZV rOkaΔgI) showed a large reduction in the percentage of cells infected and significantly smaller plaque sizes in a comparison with cultures infected with the parental strain (VZV rOka). In contrast, VZV rOkaΔgI was not significantly attenuated in fibroblast cultures, demonstrating a cell type-specific role for VZV gI. Analysis of rOkaΔgI protein localization by immunofluorescent staining revealed aberrant localization of viral glycoprotein and capsid proteins, with little or no staining present in the axons of differentiated SH-SY5Y cells infected with rOkaΔgI, yet axonal vesicle trafficking was not impaired. Further studies utilizing explanted human DRG indicated that VZV gI is required for the spread of virus within DRG. These data demonstrate a role for VZV gI in the cell-to-cell spread of virus during productive replication in neuronal cells and a role in facilitating the access of virion components to axons.


Assuntos
Axônios/virologia , Gânglios Espinais/virologia , Herpes Zoster/virologia , Herpesvirus Humano 3/metabolismo , Neurônios/virologia , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Linhagem Celular , Herpesvirus Humano 3/genética , Humanos , Transporte Proteico , Proteínas do Envelope Viral/genética , Vírion/genética , Replicação Viral
19.
J Virol ; 87(18): 10273-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864618

RESUMO

Several human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets. Skewing of polarization toward an M2 subset may benefit the virus by limiting the proinflammatory responses to infection, and so we determined whether HCMV-encoded viral IL-10 influenced monocyte polarization. Recombinant viral IL-10 protein polarized CD14(+) monocytes toward an anti-inflammatory M2 subset with an M2c phenotype, as demonstrated by high expression of CD163 and CD14 and suppression of major histocompatibility complex (MHC) class II. Significantly, in the context of productive HCMV infection, viral IL-10 produced by infected cells polarized uninfected monocytes toward an M2c phenotype. We also assessed the impact of viral IL-10 on heme oxygenase 1 (HO-1), which is an enzyme linked with suppression of inflammatory responses. Polarization of monocytes by viral IL-10 resulted in upregulation of HO-1, and inhibition of HO-1 function resulted in a loss of capacity of viral IL-10 to suppress tumor necrosis factor alpha (TNF-α) and IL-1ß, implicating HO-1 in viral IL-10-induced suppression of proinflammatory cytokines by M2c monocytes. In addition, a functional consequence of monocytes polarized with viral IL-10 was a decreased capacity to activate CD4(+) T cells. This study identifies a novel role for viral IL-10 in driving M2c polarization, which may limit virus clearance by restricting proinflammatory and CD4(+) T cell responses at sites of infection.


Assuntos
Citomegalovirus/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Interleucina-10/imunologia , Monócitos/imunologia , Monócitos/virologia , Fatores de Virulência/imunologia , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Citomegalovirus/fisiologia , Heme Oxigenase-1/análise , Antígenos de Histocompatibilidade Classe II/análise , Humanos , Interleucina-10/metabolismo , Receptores de Lipopolissacarídeos/análise , Monócitos/química , Receptores de Superfície Celular/análise , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo
20.
J Virol ; 87(5): 2979-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269790

RESUMO

Ganglia of monkeys with reactivated simian varicella virus (SVV) contained more CD8 than CD4 T cells around neurons. The abundance of CD8 T cells was greater less than 2 months after reactivation than that at later times and correlated with that of CXCL10 RNA but not with those of SVV protein or open reading frame 61 (ORF61) antisense RNA. CXCL10 RNA colocalized with T-cell clusters. After SVV reactivation, transient T-cell infiltration, possibly mediated by CXCL10, parallels varicella zoster virus (VZV) reactivation in humans.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Gânglios/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Neurônios/imunologia , Varicellovirus/imunologia , Varicellovirus/metabolismo , Varicellovirus/fisiologia , Animais , Linfócitos T CD8-Positivos/metabolismo , DNA Viral/genética , Gânglios/metabolismo , Gânglios/virologia , Infecções por Herpesviridae/genética , Macaca fascicularis , Neurônios/virologia , Fases de Leitura Aberta , RNA Antissenso/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Varicellovirus/genética , Carga Viral , Ativação Viral , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA